MHB Definite Integral challenge #2

Click For Summary
The integral challenge involves evaluating the definite integral from π/2 to 5π/2 of the function e^(arctan(sin x)) divided by the sum of e^(arctan(sin x)) and e^(arctan(cos x)). The solution is approached by breaking the integral into two parts, I1 and I2, and applying symmetry transformations. Through these transformations, it is determined that I1 equals 5π/4 and I2 equals π/4. The final result of the integral is calculated to be π. The discussion highlights the elegance of the solution and the collaborative effort in solving the problem.
Saitama
Messages
4,244
Reaction score
93
Evaluate:
$$\Large \int_{\pi/2}^{5\pi/2} \frac{e^{\arctan(\sin x)}}{e^{\arctan(\sin x)}+e^{\arctan(\cos x)}}$$
 
Last edited:
Mathematics news on Phys.org
Pranav said:
Evaluate:
$$\Large \int_{\pi/2}^{5\pi/2} \frac{e^{\arctan(\sin x)}}{e^{\arctan(\sin x)}+e^{\arctan(\cos x)}}$$

$$\begin{aligned} \Large I & = \Large \int_{\pi/2}^{5\pi/2} \frac{e^{\arctan(\sin x)}}{e^{\arctan(\sin x)}+e^{\arctan(\cos x)}}\;{dx} \\& = \Large \int_{0}^{5\pi/2} \frac{e^{\arctan(\sin x)}\;{dx}}{e^{\arctan(\sin x)}+e^{\arctan(\cos x)}}-\int_{0}^{\pi/2} \frac{e^{\arctan(\sin x)}\;{dx}}{e^{\arctan(\sin x)}+e^{\arctan(\cos x)}} \\& \Large= I_{1}-I_{2} \end{aligned}$$

Let $\displaystyle x \mapsto \frac{5\pi}{2}-x$ then $\displaystyle 2I_1 = \frac{5\pi}{2}$ thus $\displaystyle I_1 = \frac{5\pi}{4}$. Let $\displaystyle x \mapsto \frac{\pi}{2}-x$ then $\displaystyle 2I_2 = \frac{\pi}{2}$ thus $\displaystyle I_2 = \frac{\pi}{4}$. Thus $\displaystyle I = I_1-I_2 = \frac{5\pi}{4}-\frac{\pi}{4} = \pi$.
 
Last edited by a moderator:
Prometheus said:
$$\begin{aligned} \Large I & = \Large \int_{\pi/2}^{5\pi/2} \frac{e^{\arctan(\sin x)}}{e^{\arctan(\sin x)}+e^{\arctan(\cos x)}}\;{dx} \\& = \Large \int_{0}^{5\pi/2} \frac{e^{\arctan(\sin x)}\;{dx}}{e^{\arctan(\sin x)}+e^{\arctan(\cos x)}}-\int_{0}^{\pi/2} \frac{e^{\arctan(\sin x)}\;{dx}}{e^{\arctan(\sin x)}+e^{\arctan(\cos x)}} \\& \Large= I_{1}-I_{2} \end{aligned}$$

Let $\displaystyle x \mapsto \frac{5\pi}{2}-x$ then $\displaystyle 2I_1 = \frac{5\pi}{2}$ thus $\displaystyle I_1 = \frac{5\pi}{4}$. Let $\displaystyle x \mapsto \frac{\pi}{2}-x$ then $\displaystyle 2I_2 = \frac{\pi}{2}$ thus $\displaystyle I_2 = \frac{\pi}{4}$. Thus $\displaystyle I = I_1-I_2 = \frac{5\pi}{4}-\frac{\pi}{4} = \pi$.

Brilliant Prometheus! :cool:

Thanks for your participation. :)
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
4K
  • · Replies 9 ·
Replies
9
Views
2K