Definite Integral challenge #2

Click For Summary
SUMMARY

The integral $$\Large I = \int_{\pi/2}^{5\pi/2} \frac{e^{\arctan(\sin x)}}{e^{\arctan(\sin x)}+e^{\arctan(\cos x)}}\;{dx}$$ evaluates to $$\pi$$. This conclusion is reached by breaking the integral into two parts, $$I_1$$ and $$I_2$$, where $$I_1 = \frac{5\pi}{4}$$ and $$I_2 = \frac{\pi}{4}$$. The final result is derived from the difference $$I = I_1 - I_2$$, confirming that the integral equals $$\pi$$.

PREREQUISITES
  • Understanding of definite integrals
  • Familiarity with the properties of the arctangent function
  • Knowledge of substitution techniques in calculus
  • Ability to manipulate exponential functions
NEXT STEPS
  • Study advanced techniques in evaluating definite integrals
  • Learn about the properties of the arctangent function in calculus
  • Explore substitution methods for solving integrals
  • Investigate the applications of exponential functions in integrals
USEFUL FOR

Students and professionals in mathematics, particularly those focusing on calculus and integral evaluation, will benefit from this discussion.

Saitama
Messages
4,244
Reaction score
93
Evaluate:
$$\Large \int_{\pi/2}^{5\pi/2} \frac{e^{\arctan(\sin x)}}{e^{\arctan(\sin x)}+e^{\arctan(\cos x)}}$$
 
Last edited:
Physics news on Phys.org
Pranav said:
Evaluate:
$$\Large \int_{\pi/2}^{5\pi/2} \frac{e^{\arctan(\sin x)}}{e^{\arctan(\sin x)}+e^{\arctan(\cos x)}}$$

$$\begin{aligned} \Large I & = \Large \int_{\pi/2}^{5\pi/2} \frac{e^{\arctan(\sin x)}}{e^{\arctan(\sin x)}+e^{\arctan(\cos x)}}\;{dx} \\& = \Large \int_{0}^{5\pi/2} \frac{e^{\arctan(\sin x)}\;{dx}}{e^{\arctan(\sin x)}+e^{\arctan(\cos x)}}-\int_{0}^{\pi/2} \frac{e^{\arctan(\sin x)}\;{dx}}{e^{\arctan(\sin x)}+e^{\arctan(\cos x)}} \\& \Large= I_{1}-I_{2} \end{aligned}$$

Let $\displaystyle x \mapsto \frac{5\pi}{2}-x$ then $\displaystyle 2I_1 = \frac{5\pi}{2}$ thus $\displaystyle I_1 = \frac{5\pi}{4}$. Let $\displaystyle x \mapsto \frac{\pi}{2}-x$ then $\displaystyle 2I_2 = \frac{\pi}{2}$ thus $\displaystyle I_2 = \frac{\pi}{4}$. Thus $\displaystyle I = I_1-I_2 = \frac{5\pi}{4}-\frac{\pi}{4} = \pi$.
 
Last edited by a moderator:
Prometheus said:
$$\begin{aligned} \Large I & = \Large \int_{\pi/2}^{5\pi/2} \frac{e^{\arctan(\sin x)}}{e^{\arctan(\sin x)}+e^{\arctan(\cos x)}}\;{dx} \\& = \Large \int_{0}^{5\pi/2} \frac{e^{\arctan(\sin x)}\;{dx}}{e^{\arctan(\sin x)}+e^{\arctan(\cos x)}}-\int_{0}^{\pi/2} \frac{e^{\arctan(\sin x)}\;{dx}}{e^{\arctan(\sin x)}+e^{\arctan(\cos x)}} \\& \Large= I_{1}-I_{2} \end{aligned}$$

Let $\displaystyle x \mapsto \frac{5\pi}{2}-x$ then $\displaystyle 2I_1 = \frac{5\pi}{2}$ thus $\displaystyle I_1 = \frac{5\pi}{4}$. Let $\displaystyle x \mapsto \frac{\pi}{2}-x$ then $\displaystyle 2I_2 = \frac{\pi}{2}$ thus $\displaystyle I_2 = \frac{\pi}{4}$. Thus $\displaystyle I = I_1-I_2 = \frac{5\pi}{4}-\frac{\pi}{4} = \pi$.

Brilliant Prometheus! :cool:

Thanks for your participation. :)
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K