Definite integral challenge....

Click For Summary
SUMMARY

The discussion focuses on evaluating the definite integral $$\int_0^z\frac{x^m}{(a+\log x)}\,dx$$ for positive integers $$m$$ and positive real numbers $$a$$ and $$z$$. The antiderivative is expressed in terms of the exponential integral function, specifically $$\text{Ei}$$. The final form of the antiderivative is $$e^{-a(m+1)} \text{Ei} \Big( (a+\ln x) (m+1) \Big) + C$$. The participants emphasize the need for additional restrictions on parameters to ensure convergence of the integral.

PREREQUISITES
  • Understanding of definite integrals and antiderivatives
  • Familiarity with the exponential integral function, $$\text{Ei}$$
  • Knowledge of logarithmic functions and their properties
  • Basic concepts of convergence in integrals
NEXT STEPS
  • Research the properties and applications of the exponential integral function, $$\text{Ei}$$
  • Study convergence criteria for improper integrals
  • Explore generalized forms of logarithmic integrals
  • Learn techniques for evaluating definite integrals involving logarithmic functions
USEFUL FOR

Mathematicians, students studying calculus, and anyone interested in advanced integral calculus and its applications in mathematical analysis.

DreamWeaver
Messages
297
Reaction score
0
For $$m \in \mathbb{Z}^+$$, and $$a, \, z \in \mathbb{R} > 0$$, evaluate the definite integral:$$\int_0^z\frac{x^m}{(a+\log x)}\,dx$$[I'll be adding a few generalized forms like this in the logarithmic integrals thread, in Maths Notes, shortly... (Heidy) ]
 
Physics news on Phys.org
You can find an antiderivative in terms of the exponential integral.$ \displaystyle \int \frac{x^{m}}{a+\ln x} \ dx = \int \frac{e^{u(m+1)}}{a+u} \ du = e^{-a(m+1)} \int \frac{e^{m(w+1)}}{w} \ dw $

$ \displaystyle = e^{-a(m+1)} \ \text{Ei} \Big( w(m+1) \Big) + C $

$ \displaystyle = e^{-a(m+1)} \ \text{Ei} \Big( (a+u) (m+1) \Big) + C $

$ \displaystyle = e^{-a(m+1)} \ \text{Ei} \Big( (a+\ln x) (m+1) \Big) + C $And I think you need more restrictions on the parameters to guarantee convergence.
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K