DEFINITE integral of sinaxsinbx FROM 0 to infinity

Click For Summary
SUMMARY

The discussion focuses on evaluating the definite integral of sin(ax)sin(bx) from 0 to infinity, particularly when a and b are different. The user iqjump123 seeks assistance after failing to find a solution in the Gredsteyn book of integrals and transforms. A key insight provided is the use of product-to-sum formulas and the double angle formula for sin²(θ) when a equals b. The consensus is that the integral does not converge as t approaches infinity, necessitating manual evaluation of limits.

PREREQUISITES
  • Understanding of integral calculus, specifically definite integrals.
  • Familiarity with trigonometric identities, including product-to-sum formulas.
  • Knowledge of limits and convergence in calculus.
  • Experience with mathematical software like Mathcad for symbolic computation.
NEXT STEPS
  • Research the product-to-sum formulas for trigonometric functions.
  • Study the convergence criteria for improper integrals.
  • Learn about the double angle formulas for sine and cosine functions.
  • Explore advanced integration techniques, including integration by parts and substitution.
USEFUL FOR

Mathematics students, educators, and professionals dealing with integral calculus, particularly those focused on trigonometric integrals and their applications in solving partial differential equations (PDEs).

iqjump123
Messages
58
Reaction score
0
Hello, first time poster.

I am putting this question in the PDE section because this was a question I came up while solving a PDE question.

Also, I figured that since this is not a straight homework question, I can post in this category. Mods, feel free to move this post to wherever you see fit. thanks.

I have looked everywhere, including the gredsteyin book of integrals and transforms to find this solution, but I wasn't able to find it. I am especially talking about the one from 0 to infinity as the bounds.

using mathcad just gives me a solution with infinity in it as a variable.

My professor will not tell me what it is, pretty much telling me that I am a fool for not being able to find it. @#%@#%@#%@

Also, another one that I couldn't find it for was:

integral of sin(ax)sin(ax) from 0 to an arbitrary number t?
Any help on this will be appreciated!
Thanks so much.

iqjump123
 
Physics news on Phys.org
iqjump123 said:
Hello, first time poster.

I am putting this question in the PDE section because this was a question I came up while solving a PDE question.

Also, I figured that since this is not a straight homework question, I can post in this category. Mods, feel free to move this post to wherever you see fit. thanks.

I have looked everywhere, including the gredsteyin book of integrals and transforms to find this solution, but I wasn't able to find it. I am especially talking about the one from 0 to infinity as the bounds.

using mathcad just gives me a solution with infinity in it as a variable.

My professor will not tell me what it is, pretty much telling me that I am a fool for not being able to find it. @#%@#%@#%@

Also, another one that I couldn't find it for was:

integral of sin(ax)sin(ax) from 0 to an arbitrary number t?
Any help on this will be appreciated!
Thanks so much.

iqjump123

Look at the product formulas here if a and b aren't equal:

http://www.sosmath.com/trig/prodform/prodform.html

If a = b you can use the double angle formula for sin2(θ). I don't think you will find the integral converges for t → ∞.
 
LCKurtz said:
Look at the product formulas here if a and b aren't equal:

http://www.sosmath.com/trig/prodform/prodform.html

If a = b you can use the double angle formula for sin2(θ). I don't think you will find the integral converges for t → ∞.

Thanks for the info!

I figured as such for the ones with the different values for a and b..
I think I will just write out the indefinite forms and write out the limits manually instead of evaluating it.

If anybody else can shed light on this topic, that will be great!
Thanks very much.
 
You might remember that cos(a+ b)= cos(a)cos(b)- sin(a)sin(b)
Changing the sign on b: cos(a- b)= cos(a)cos(b)+ sin(a)sin(b)
(because cos(-b)= cos(b) and sin(-b)= -sin(b).

Subtracting the first equation from the second, the "cos(a)cos(b)" terms cancel and we have
cos(a-b)- cos(a+b)= 2sin(a)sin(b) so that

sin(a)sin(b)= (1/2)(cos(a-b)- cos(a+ b)[

and, therefore,
sin(ax)sin(bx)= (1/2)(cos((a-b)x)- cos((a+b)x)

From that, it is easy to get
\int_0^A sin(ax)sin(bx)= (1/2)\int_0^A cos((a-b)x)dx- (1/2)\int_0^A cos((a+b)x)
\frac{1}{2(a-b)}sin((a-b)A- \frac{1}{2(a+b)}sin((a+b)A)

But the problem is taking the limit as A goes to infinity!
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
4
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K