Undergrad How Is Divergence to Infinity Defined in Contrast to General Divergence?

Click For Summary
Divergence in sequences is defined as the negation of convergence, meaning that for every real number L, there exists an epsilon such that for all natural numbers N, there are terms in the sequence that do not get arbitrarily close to L. Divergence to infinity is a specific case where, for every real number M, there exists a natural number N such that all terms beyond N exceed M. The second definition is a subset of the first, indicating that if a sequence diverges to infinity, it also diverges in the general sense. However, the reverse is not true, as oscillating sequences serve as counterexamples. A proof can be constructed by contradiction, showing that if a sequence diverges to infinity, it cannot converge or be bounded.
Mr Davis 97
Messages
1,461
Reaction score
44
The general definition for a sequence to diverge is the negation of what it means for a sequence to converge: ##\forall L\in\mathbb{R}~\exists\epsilon>0~\forall N\in\mathbb{N}~\exists n\ge N##, ##|a_n - L| \ge \epsilon##. How does this general definition of divergence relate to the definition of a sequence diverging specifically to infinity, which is ##\forall M \in \mathbb{R} ~ \exists N \in \mathbb{N} \forall n \ge N##, ##a_n > M##?
 
Physics news on Phys.org
The second is a sub-case of the first, so if the second criteria is met, so will the first be. That needs to be proved. It is not difficult. The reverse implication does not hold. Oscillating sequences are a counterexample.
 
andrewkirk said:
The second is a sub-case of the first, so if the second criteria is met, so will the first be. That needs to be proved. It is not difficult. The reverse implication does not hold. Oscillating sequences are a counterexample.
How would I go about showing that the second criteria implies the first, out of curiosity? I tried to take a stab at it, but I got buried by the quantifiers...

EDIT: Actually, maybe I see how to do. If we argue by contradiction we see that ##a_n## must converge, and so is bounded. But that contradicts the fact that it is unbounded...
 
Not quite formally: Let L be any real number and M any number M > L. Define ##M - L = \epsilon##. Then eventually all ##a_n > M## which certainly meets the condition ##|a_n - L| \geq \epsilon##
 

Similar threads

  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 44 ·
2
Replies
44
Views
6K