MHB Definitions of Functions and Spaces

imfromyemen
Messages
1
Reaction score
0
Hi everyone,
I am in second year university and am taking linear algebra this semester. Never having been a strong maths student, I am certainly struggling with some basic concepts and especially notation.

I have tried searching on the web but have had difficulty in finding something which properly explains the meaning of notation like

$$ f: \Bbb{R^2} \to \Bbb{R}$$ or the difference between
$x\in \Bbb{R^n}$ and $x \in \Bbb{R}$I can basically read these, and know the literal pronounciation of the symbols, but have no idea what they actually mean.

The first one would be $f$ maps $\Bbb{R^2}$ to $\Bbb{R}$. What does this mean exactly?

Is it saying that on an (x,y) plane, the function f returns a single point?
so for example - f(x) = 4x, then f(1) = 4
is the second one saying that x is an element of a vector space with n elements $(ax_1, bx_2,...,a_nx_n)$, whereas the first one is saying that x is just some real number?

I would really appreciate if someone could help me with this, I want to do really well in mathematics and not being able to understand these little things is making everything much more difficult than it need be.

kind regards
 
Last edited:
Physics news on Phys.org
imfromyemen said:
I have tried searching on the web but have had difficulty in finding something which properly explains the meaning of notation like

$$ f: \Bbb{R^2} \to \Bbb{R}$$ or the difference between
$x\in \Bbb{R^n}$ and $x \in \Bbb{R}$I can basically read these, and know the literal pronounciation of the symbols, but have no idea what they actually mean.

The first one would be $f$ maps $\Bbb{R^2}$ to $\Bbb{R}$. What does this mean exactly?

Is it saying that on an (x,y) plane, the function f returns a single point?
so for example - f(x) = 4x, then f(1) = 4
is the second one saying that x is an element of a vector space with n elements $(ax_1, bx_2,...,a_nx_n)$, whereas the first one is saying that x is just some real number?

I would really appreciate if someone could help me with this, I want to do really well in mathematics and not being able to understand these little things is making everything much more difficult than it need be.

kind regards

Hello! (Smile)

The notation $f:\mathbb{R}^2 \rightarrow \mathbb{R}$ means that $f$ is a function whose domain is $\mathbb{R}^2$, the set of real $2-$vectors, and whose range is some subset of $\mathbb{R}$, possibly but not necessarily all of $\mathbb{R}$.

An example of such a function is the following: $f(x, y)=x^2y$. $\mathbb{R}^n$ is the set of ordered $n-$tuples of real numbers, $$\mathbb{R}^n=\{(x_1, x_2, \dots , x_n): x_1, x_2, \dots , x_n \in \mathbb{R}\}$$

The elements of $\mathbb{R}^n$ are called vectors. Given a vector $x=(x_1, x_2 \dots , x_n)$, the numbers $x_1, x_2 , \dots , x_n$ are called components of $x$.


At the definition of $\mathbb{R}^n$, for $n=1$ we get $\mathbb{R}^1=\mathbb{R}$ which can be interpreted as the number line.

In other words, $\mathbb{R}$ is the set of real numbers.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top