Derivation of Boltzmann Factor via Reservoir Method (canonical ensemble)

Click For Summary

Homework Help Overview

The discussion revolves around the derivation of the Boltzmann factor using the reservoir method within the context of canonical ensembles in statistical mechanics. Participants are examining the relationship between the probabilities of microstates in a system and its reservoir, questioning the assumptions made in the derivation presented in the referenced materials.

Discussion Character

  • Exploratory, Conceptual clarification, Assumption checking

Approaches and Questions Raised

  • Participants explore the proportionality of probabilities to the number of microstates in both the system and reservoir, questioning the validity of neglecting higher order terms in the energy expressions. There is a discussion about the implications of fixing the system's microstate versus its energy.

Discussion Status

The conversation is ongoing, with participants clarifying their understanding of the relationship between the system and reservoir. Some have acknowledged confusion regarding the distinction between microstates and energy states, while others are probing deeper into the assumptions made in the derivation.

Contextual Notes

Participants are working under the constraints of fixed total energy for the system and reservoir, and there is a recognition that the size of the reservoir influences the enumeration of microstates. The discussion also highlights the potential for misinterpretation of terms related to probabilities in the context of microstates versus energy states.

yucheng
Messages
232
Reaction score
57
Homework Statement
n/a
Relevant Equations
n/a
https://scholar.harvard.edu/files/schwartz/files/7-ensembles.pdf
https://mcgreevy.physics.ucsd.edu/s12/lecture-notes/chapter06.pdf

On page 3 of both the notes above, the author merely claims that $$P \propto \Omega_{\text{reservoir}}$$

But isn't $$P \propto \Omega_{\text{system}}\Omega_{\text{reservoir}}$$?

We have

$$\mathrm{ln} \ \Omega_{\text{res}} (E_{\text{tot}} - E_{\text{sys}})= \mathrm{ln} \ \Omega_{\text{res}} (E_{\text{tot}} ) - E_{\text{sys}} \frac{\partial \mathrm{ln} \ \Omega_{\text{res}}}{\partial E_{\text{sys}}} + \text{higher order terms}$$

Why are higher order terms negligible? We know that they are small compared to the total energy, and how large they are in numerical terms, depends on the unit of energy. Hence we can scale the unit such that ##E_{\text{sys}}<<1## then the higher order terms obviously disappear. Is reasonable?

$$\mathrm{ln} \ \Omega_{\text{sys}} (E_{\text{sys}})= \mathrm{ln} \ \Omega_{\text{sys}} (0) + E_{\text{sys}} \frac{\partial \mathrm{ln} \ \Omega_{\text{sys}}}{\partial E_{\text{sys}}} + \text{higher order terms} = E_{\text{sys}} \frac{\partial \mathrm{ln} \ \Omega_{\text{sys}}}{\partial E_{\text{sys}}} + \text{higher order terms}$$

so... in equilibrium, both the reservoir and system have the same temperature, but the partial derivatives are evaluated at different energies, but since they are in equilibrium,

Thus $$\frac{\partial \mathrm{ln} \ \Omega_{\text{sys}}}{\partial E_{\text{sys}}} \bigg \rvert_{0} = \beta_{sys}$$
$$\frac{\partial \mathrm{ln} \ \Omega_{\text{res}}}{\partial E_{\text{sys}}} \bigg \rvert_{E_{\text{tot}}} = \beta_{res}$$

But aren't $$\beta = 1/kT$$? So... aren't they equal?

Which just means that
$$P \propto \Omega_{\text{system}}\Omega_{\text{reservoir}} \propto e^{\beta({E_{\text{sys}} - E_{\text{sys}}})} \propto 1$$?

hence ##P \propto \Omega_{\text{system}}\Omega_{\text{reservoir}}## cannot be right!?

Thanks in advance!
 
Last edited:
Physics news on Phys.org
The first equation holds under the following conditions:

"Since the ##system + reservoir## is a closed system, the total energy of the ##system + reservoir## is fixed at ##E_{tot}##. Since we have fixed the microstate ##k## of the system, the total number of states is determined only by properties of the reservoir. More precisely, the probability of finding the system in microstate ##k## is proportional to the number of ways of configuring the ##system + reservoir## with the system in microstate ##k##."

see page 3 in https://scholar.harvard.edu/files/schwartz/files/7-ensembles.pdf
 
Lord Jestocost said:
the total number of states is determined only by properties of the reservoir. More precisely, the probability of finding the system in microstate ##k## is proportional to the number of ways of configuring the ##system + reservoir## with the system in microstate ##k##."
Why is the total number of states is determined only by properties of the reservoir?
Is it because the reservoir is so large that it swamps out the system i.e. we can neglect the properties of the system itself when enumerating the total microstates of the composition of system and reservoir?
 
When one fixes the system to be in state ##k## with energy ##E_k##, this states can be realized ##\Omega_{reservoir}(E_{tot}-E_k)## times.
 
  • Like
Likes   Reactions: yucheng
Lord Jestocost said:
When one fixes the system to be in state ##k## with energy ##E_k##, this states can be realized ##\Omega_{reservoir}(E_{tot}-E_k)## times.
I think I understand where I am confused.

My intuition: the probability of the system having a particular energy is ##\propto## to the number of microstates the system takes

So where was this fact incorporated? In the summation at the end... where the summation in the partition function is taken over all the microstates a system can take (not over the distinct energies)!

P.S. in fact, I was very careless. You are right, one fixes the microstate, not the energy, hence the author derived the probability of being in that microstate, not the probability of being in that energy!

P.S.S. if one were to take the summation in the partition function over distinct energies, one would need to associate a weight factor with each distinct energy; this serves as the motivation for section 3.4 of Pathria & Beale! And that was what confused me even more when the author uses ##P## for both the probability of being in a microstate and of having a definite energy!

Thanks!
 
Last edited:
  • Like
Likes   Reactions: vanhees71 and Lord Jestocost

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
16
Views
6K
  • · Replies 6 ·
Replies
6
Views
3K