I Derivation of Riemann tensor's first order-equation

  • I
  • Thread starter Thread starter MathematicalPhysicist
  • Start date Start date
  • Tags Tags
    Derivation Riemann
MathematicalPhysicist
Science Advisor
Gold Member
Messages
4,662
Reaction score
372
TL;DR Summary
Trying to derive Eq. (8.25) for Riemann tensor in the book of Schutz's in GR.
According to Schutz's second edition book, the equation for Riemann tensor to first order in ##h_{\mu\nu}## is:

$$R_{\alpha\beta\mu\nu}= \frac{1}{2}(h_{\alpha \nu,\beta \mu}+h_{\beta\mu,\alpha\nu}-h_{\alpha\mu,\beta \nu}-h_{\beta \nu , \alpha \mu})$$
which (as stated in the book) can be derived easily by using Eq. (8.12) which is:

$$g_{\alpha \beta}=\eta_{\alpha \beta}+h_{\alpha\beta}$$
All this is covered in pages 189-192.

How to derive the above identity? and how to derive the n-th order in ##h_{\mu\nu}## equation for Riemann tensor?
How come this equation is of first order in ##h_{\mu\nu}## if the terms in the above equation are second order derivatives of ##h##.

Thanks in advance!
 
Physics news on Phys.org
It is first order in ##h## (and its derivatives), not in the order of the derivatives. The assumption is that ##h## and its derivatives are small and you ignore terms that are of higher order in ##h##. The derivation is just inserting your metric into the expression for the Christoffel symbols (keeping only terms linear in ##h##) and then inserting the expression for the Christoffel symbols into the expression for the curvature components in terms of the Christoffel symbols (again, keeping only terms linear in ##h##).
 
  • Like
Likes MathematicalPhysicist
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top