Undergrad Derivation of the Canonical Ensemble

Click For Summary
SUMMARY

The discussion focuses on the derivation of the canonical ensemble in statistical thermodynamics, emphasizing the relationship between microstates and macrostates. It establishes that the energy of a system in a specific microstate, denoted as ##E_i##, cannot correspond to multiple microstates, as each microstate represents a unique configuration of particles. The canonical partition function ##Z## is defined, and the probability of the system being in a particular energy state is derived as $$P(E_1)=\frac{1}{Z} \exp(-E_1/T)$$. The conversation clarifies the importance of considering the degeneracy of states when summing over microstates.

PREREQUISITES
  • Understanding of statistical thermodynamics concepts
  • Familiarity with microstates and macrostates
  • Knowledge of canonical partition function and its significance
  • Basic grasp of entropy and its mathematical representation
NEXT STEPS
  • Study the derivation of the canonical partition function in detail
  • Explore the concept of degeneracy in statistical mechanics
  • Learn about the implications of the zeroth law of thermodynamics
  • Investigate the relationship between microstates and entropy in greater depth
USEFUL FOR

Students and researchers in physics, particularly those specializing in statistical mechanics and thermodynamics, will benefit from this discussion. It is also valuable for anyone seeking to deepen their understanding of the canonical ensemble and its applications in physical systems.

Dario56
Messages
289
Reaction score
48
One of the common derivations of the canonical ensemble goes as follows:

Assume there is a system of interest in the contact with heat reservoir which together form an isolated system. Heat can be exchanged between the system and reservoir until thermal equilibrium is established and both are at temperature ##T##.

Suppose system of interest is in microstate ##i## and that it has energy ##E_{i}##, energy of the reservoir is than defined as ##E_R = E - E_i##. In the last equation ##E## is the energy of the total isolated system which must be constant.

We want to determine the number of microstates of the total isolated system in which the system of interest is in microstate ##i## or the probability that isolated system will be in such a state. Number of such microstates is denoted as ##\Omega_i(E)## and is equal to the number of microstates of the reservoir ##\Omega_R(E - E_i)## since the system of interest is in particular microstate ##i##.

Total number of microstates of the isolated system is defined as: $$\Omega (E) = \sum_{i=1} \Omega_R(E - E_i)$$

that is, it is equal to sum of the number of the reservoir microstates over every microstate of the system of interest ##i##.

Not going further into the derivation, number of microstates and probability mentioned previously are given by: $$\Omega_R(E - E_i) = \Omega_R(E)e^{- \beta E_i}$$ $$ P_i = \frac {e^{-\beta E_i}} {\sum_{j=1}^N e^{-\beta E_j}} $$

where the denominator of the previous equation is the canonical partition function ##Z##and ##N## is the number of the microstates in which the system can be.Now, we come to my question.

According to the notation given, microstate of the system ##i## is determined by the system's energy ##E_i##.

However, we know that the task of statistical thermodynamics is to connect macrostate of the system with microstates in which it can be found. Energy of the system is its macrostate and therefore such a macrostate is compatible with many different microstates in which system may be.

Because of this, energy of the system ##E_i## can't depend only on particular microstate ##i## since the same microstate can be compatible with more than one energy of the system.

In another words, for any ## i## there may be more than one term in the partition function. However, equation form of the partition function doesn't allow more than one term for each microstate.
 
Science news on Phys.org
One should keep in mind, that the sum in ##\Omega (E_{total}) = \sum_{n=1} \Omega_R(E_{total}- E_n)## is over all the states of the system of interest, ##S##, rather than over the energy levels of ##S##. In the latter case, one would have to include a factor of ##\Omega_S(E_n)## in the sum to take into account the degeneracy of states with energy ##E_n##.

See: "Statistical Physics" by David Tong

Statistical Physics - DAMTP

 
That's why the usual derivation goes like
$$\Omega(E)=\Omega_1(E_1) \Omega_2(E_2)=\Omega_1(E_1) \Omega_2(E-E_1).$$
Then define the entropy
$$S=\ln \Omega(E)=k \ln \Omega_1(E_1) + k \ln \Omega_2(E-E_1).$$
The most probable state is given by the maximum of the entropy, i.e., for
$$1/T_1=\frac{\partial \Omega_1(E_1)}{\partial E_1} = 1/T_2=\left [\frac{\partial \Omega_2(E_2)}{\partial E_2} \right]_{E_2=E-E_1}.$$
That's the "zeroth Law" introducing temperature as a thermodynamical variable of state.

Now we consider the probability for the system of interest to have one of its possible energies ##E_1##. This probability is proportional to the number of microstates of system 2 with energy ##E-E_1## times the degeneracy factor of ##E_1##, which however is just an overall factor, all of which we lump into a common factor ##C##,
$$P(E_1)=C \Omega_2(E-E_1).$$
Expanding the logarithm of this gives
$$\ln P(E_1)=\ln C +\ln \Omega_2(E) -E_1/T=C'-E_1/T$$
and thus
$$P(E_1)=\frac{1}{Z} \exp(-E_1/T), \quad Z=\sum_{E_1} \exp(-E_1/T).$$
 
Lord Jestocost said:
One should keep in mind, that the sum in ##\Omega (E_{total}) = \sum_{n=1} \Omega_R(E_{total}- E_n)## is over all the states of the system of interest, ##S##, rather than over the energy levels of ##S##. In the latter case, one would have to include a factor of ##\Omega_S(E_n)## in the sum to take into account the degeneracy of states with energy ##E_n##.

See: "Statistical Physics" by David Tong

Statistical Physics - DAMTP

Yes, I think this question is clear now. What confused me is that I thought that microstate ##i## can be compatible with more than one energy state of system of interest ##E_i##. This really has no sense since microstate is an instantaneous configuration of particles over available energy states.

If energy of the system of interest changes, so do the available energy states of the particles which means that for every energy of the system of interest there is a unique set of microstates in which system may be.
 
  • Like
Likes Lord Jestocost

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 18 ·
Replies
18
Views
6K
  • · Replies 37 ·
2
Replies
37
Views
5K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
39
Views
6K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K