Derivative of ln(x): Definition & Calculation

  • Context: MHB 
  • Thread starter Thread starter Amer
  • Start date Start date
  • Tags Tags
    Derivative
Click For Summary

Discussion Overview

The discussion revolves around finding the derivative of the natural logarithm function, ln(x), using the definition of a derivative. Participants explore various approaches to derive the expression for the derivative, including mathematical proofs and series expansions.

Discussion Character

  • Exploratory
  • Mathematical reasoning

Main Points Raised

  • Some participants inquire about the possibility of finding the derivative of ln(x) using the limit definition of the derivative.
  • One participant presents a proof involving the limit of the difference quotient and the use of the Maclaurin series for ln(1+x) to derive that the derivative is 1/x.
  • Another participant provides a similar approach, manipulating the limit definition and introducing a substitution to show that the derivative also results in 1/x.
  • There are multiple formulations of the limit definition presented, with variations in notation and steps taken to arrive at the derivative.

Areas of Agreement / Disagreement

Participants generally agree on the approach to finding the derivative of ln(x) using the limit definition, but there are variations in the methods and steps presented. No consensus is reached on a singular method, as different participants propose different proofs and manipulations.

Contextual Notes

Some mathematical steps are presented without full resolution, and the discussion includes various assumptions and notations that may affect the clarity of the proofs. The dependence on series expansions and limit manipulations introduces additional complexity.

Amer
Messages
259
Reaction score
0
Is it possible to find the derivative of ln(x) by the definition how ?

f'(x) = \lim _ {h\rightarrow 0 } \frac{f(h+x) - f(x)}{h}
 
Physics news on Phys.org
Amer said:
Is it possible to find the derivative of ln(x) by the definition how ?
See http://www.mathhelpboards.com/f35/problem-week-14-july-2nd-2012-a-1343/#post6686.
 
Here is a possible proof.
To prove: $$\lim_{h \to 0} \frac{\ln(x+h)-\ln(x)}{h} = \frac{1}{x}$$
Proof:
$$\lim_{h \to 0} \frac{\ln(x+h)-\ln(x)}{h} = \lim_{h \to 0} \frac{\ln\left(\frac{x+h}{x}\right)}{h} = \lim_{h \to 0} \frac{\ln\left(1+\frac{h}{x}\right)}{h}$$

We can use the maclaurin serie of $\ln(1+x)$ now.
$$\ln\left(1+\frac{h}{x}\right) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1}\left(\frac{h}{x}\right)^{n+1}$$

Thus
$$\lim_{h \to 0} \frac{\displaystyle \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1}\left(\frac{h}{x}\right)^{n+1}}{h}$$
$$=\lim_{h \to 0} \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1}\frac{h^n}{x^{n+1}}$$
$$= \lim_{h \to 0} \left[\frac{1}{x} + \sum_{n=1}^{\infty} \frac{(-1)^n}{n+1}\frac{h^n}{x^{n+1}}\right]$$
$$= \frac{1}{x} + \sum_{n=1}^{\infty} \left[ \lim_{h \to 0} \frac{(-1)^n}{n+1}\frac{h^n}{x^{n+1}}\right] = \frac{1}{x}$$
 
Hello, Amer!

Is it possible to find the derivative of f(x) \,=\,\ln x by the definition? .How?

f'(x)\:=\:\lim_{h\to0}\frac{f(x+h)- f(x)}{h}
f(x+h) - f(x) \;=\; \ln(x+h) - \ln(x) \;=\;\ln\left(\frac{x+h}{x}\right) \;=\;\ln\left(1 + \frac{h}{x}\right)\frac{f(x+h) - f(x)}{h} \;=\;\frac{1}{h}\ln\left(1 + \frac{h}{x}\right) \;=\;\ln\left(1 + \frac{h}{x}\right)^{\frac{1}{h}}

. . . . . . . . . . . . =\;\ln\left(1 + \frac{h}{x}\right)^{\frac{1}{h}\cdot\frac{x}{x}} \;=\; \ln\left[\left(1 + \frac{h}{x}\right)^{\frac{x}{h}}\right]^{\frac{1}{x}}f'(x) \;=\;\lim_{h\to0}\frac{f(x+h) - f(x)}{h} \;=\;\lim_{h\to0}\left[\ln\left(1 + \frac{h}{x}\right)^{\frac{x}{h}}\right]^{\frac{1}{x}}

Let u \,=\,\frac{x}{h} . . Note: if h\to0, then u \to\infty
We have: .\lim_{u\to\infty}\left[\ln\left(1 + \frac{1}{u}\right)^u\right]^{\frac{1}{x}} \;=\;\ln\left[\underbrace{\lim_{u\to\infty}\left(1 + \frac{1}{u}\right)^u}_{\text{This is }e}\right]^{\frac{1}{x}}Therefore: .f'(x) \;=\;\ln(e)^{\frac{1}{x}} \;=\;\frac{1}{x}\cdot\ln(e) \;=\;\frac{1}{x}
 
Thanks many :)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
5
Views
1K