MHB Derivative of ln(x): Definition & Calculation

  • Thread starter Thread starter Amer
  • Start date Start date
  • Tags Tags
    Derivative
Click For Summary
The derivative of ln(x) can be calculated using the definition of a derivative, f'(x) = lim(h→0) [f(x+h) - f(x)]/h. By applying the properties of logarithms, the expression simplifies to lim(h→0) [ln(1 + h/x)]/h. Utilizing the Maclaurin series for ln(1 + x), the limit evaluates to 1/x. This confirms that the derivative of ln(x) is indeed 1/x, demonstrating the validity of the definition-based approach. The discussion effectively illustrates the mathematical proof for finding the derivative of the natural logarithm function.
Amer
Messages
259
Reaction score
0
Is it possible to find the derivative of ln(x) by the definition how ?

f'(x) = \lim _ {h\rightarrow 0 } \frac{f(h+x) - f(x)}{h}
 
Physics news on Phys.org
Amer said:
Is it possible to find the derivative of ln(x) by the definition how ?
See http://www.mathhelpboards.com/f35/problem-week-14-july-2nd-2012-a-1343/#post6686.
 
Here is a possible proof.
To prove: $$\lim_{h \to 0} \frac{\ln(x+h)-\ln(x)}{h} = \frac{1}{x}$$
Proof:
$$\lim_{h \to 0} \frac{\ln(x+h)-\ln(x)}{h} = \lim_{h \to 0} \frac{\ln\left(\frac{x+h}{x}\right)}{h} = \lim_{h \to 0} \frac{\ln\left(1+\frac{h}{x}\right)}{h}$$

We can use the maclaurin serie of $\ln(1+x)$ now.
$$\ln\left(1+\frac{h}{x}\right) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1}\left(\frac{h}{x}\right)^{n+1}$$

Thus
$$\lim_{h \to 0} \frac{\displaystyle \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1}\left(\frac{h}{x}\right)^{n+1}}{h}$$
$$=\lim_{h \to 0} \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1}\frac{h^n}{x^{n+1}}$$
$$= \lim_{h \to 0} \left[\frac{1}{x} + \sum_{n=1}^{\infty} \frac{(-1)^n}{n+1}\frac{h^n}{x^{n+1}}\right]$$
$$= \frac{1}{x} + \sum_{n=1}^{\infty} \left[ \lim_{h \to 0} \frac{(-1)^n}{n+1}\frac{h^n}{x^{n+1}}\right] = \frac{1}{x}$$
 
Hello, Amer!

Is it possible to find the derivative of f(x) \,=\,\ln x by the definition? .How?

f'(x)\:=\:\lim_{h\to0}\frac{f(x+h)- f(x)}{h}
f(x+h) - f(x) \;=\; \ln(x+h) - \ln(x) \;=\;\ln\left(\frac{x+h}{x}\right) \;=\;\ln\left(1 + \frac{h}{x}\right)\frac{f(x+h) - f(x)}{h} \;=\;\frac{1}{h}\ln\left(1 + \frac{h}{x}\right) \;=\;\ln\left(1 + \frac{h}{x}\right)^{\frac{1}{h}}

. . . . . . . . . . . . =\;\ln\left(1 + \frac{h}{x}\right)^{\frac{1}{h}\cdot\frac{x}{x}} \;=\; \ln\left[\left(1 + \frac{h}{x}\right)^{\frac{x}{h}}\right]^{\frac{1}{x}}f'(x) \;=\;\lim_{h\to0}\frac{f(x+h) - f(x)}{h} \;=\;\lim_{h\to0}\left[\ln\left(1 + \frac{h}{x}\right)^{\frac{x}{h}}\right]^{\frac{1}{x}}

Let u \,=\,\frac{x}{h} . . Note: if h\to0, then u \to\infty
We have: .\lim_{u\to\infty}\left[\ln\left(1 + \frac{1}{u}\right)^u\right]^{\frac{1}{x}} \;=\;\ln\left[\underbrace{\lim_{u\to\infty}\left(1 + \frac{1}{u}\right)^u}_{\text{This is }e}\right]^{\frac{1}{x}}Therefore: .f'(x) \;=\;\ln(e)^{\frac{1}{x}} \;=\;\frac{1}{x}\cdot\ln(e) \;=\;\frac{1}{x}
 
Thanks many :)
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
9
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
5
Views
1K