MHB Derivative of sec²(2x) - tan²(2x)

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Derivative
Click For Summary
The derivative of sec²(2x) - tan²(2x) simplifies to 0, as shown through various methods, including trigonometric identities and direct differentiation. By rewriting sec²(2x) - tan²(2x) as 1, the derivative becomes the derivative of a constant, which is 0. When applying the chain rule directly, the differentiation yields the same result, confirming that both approaches are valid. There is some confusion regarding the correct application of parentheses in the differentiation process, which can lead to misunderstandings. Ultimately, the discussion emphasizes the consistency of the result across different methods of differentiation.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\displaystyle\frac{d}{dx} sec^2(2x)-tan^2(2x)$

rewriting...

$\displaystyle\frac{1}{cos^2(2x)}-\frac{sin^2(2x)}{cos^2(2x)}$

$\displaystyle\frac{cos^2(2x)}{cos^2(2x)}=1$

$\displaystyle\frac{d}{dx}(1)=0$

I put this in $W|A$ but there were many complicated steps just to get the same answer

how do you use the chain rule on $sec^2(2x)$ and $tan^2(2x)$
 
Physics news on Phys.org
Re: derivative of sec^2(2x)-tan^2(2x)

karush said:
$\displaystyle\frac{d}{dx} sec^2(2x)-tan^2(2x)$

rewriting...

$\displaystyle\frac{1}{cos^2(2x)}-\frac{sin^2(2x)}{cos^2(2x)}$

$\displaystyle\frac{cos^2(2x)}{cos^2(2x)}=1$

$\displaystyle\frac{d}{dx}(1)=0$

I put this in $W|A$ but there were many complicated steps just to get the same answer

how do you use the chain rule on $sec^2(2x)$ and $tan^2(2x)$

What you've done is fine, I don't know why you're worrying.

An alternative is to use the identity \displaystyle \begin{align*} \sec^2{(x)} \equiv 1 + \tan^2{(x)} \end{align*}, giving

\displaystyle \begin{align*} \sec^2{(2x)} - \tan^2{(2x)} &\equiv 1 + \tan^2{(2x)} - \tan^2{(2x)} \\ &\equiv 1 \end{align*}
 
Re: derivative of sec^2(2x)-tan^2(2x)

karush said:
...
how do you use the chain rule on $sec^2(2x)$ and $tan^2(2x)$

Suppose you do not smplify the expression using trigonometric identities before differentiating:

$$\frac{d}{dx}\left(\sec^2(2x)-\tan^2(2x) \right)=$$

Differentiating term by term, using the power and chain rules, we find:

$$2\sec(2x)\cdot\frac{d}{dx}(\sec(2x))-2\tan(2x)\cdot\frac{d}{dx}(\tan(2x))=$$

$$2\sec(2x)\cdot\sec(2x)\tan(2x)\cdot\frac{d}{dx}(2x)-2\tan(2x)\cdot\sec^2(2x)\cdot\frac{d}{dx}(2x)=$$

$$4\sec^2(2x)\tan(2x)-4\sec^2(2x)\tan(2x)=0$$
 
Re: derivative of sec^2(2x)-tan^2(2x)

karush said:
$\displaystyle\frac{d}{dx} sec^2(2x)-tan^2(2x)$
Please use parenthesis when needed. The line above reads:
[math]\frac{d}{dx} \left ( sec^2(2x) \right ) - tan^2(2x)[/math]

not
[math]\frac{d}{dx} \left ( sec^2(2x) - tan^2(2x) \right )[/math]
which is what you wanted.

-Dan
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 2 ·
Replies
2
Views
895
  • · Replies 6 ·
Replies
6
Views
2K
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
17K