Derivative of sec²(2x) - tan²(2x)

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Derivative
Click For Summary
SUMMARY

The derivative of the expression sec²(2x) - tan²(2x) simplifies to 0. By applying trigonometric identities, specifically sec²(2x) ≡ 1 + tan²(2x), the expression reduces to 1, whose derivative is 0. The discussion emphasizes the importance of using the chain rule correctly when differentiating sec²(2x) and tan²(2x), leading to the same conclusion. The final result confirms that the derivative of the original expression is indeed 0.

PREREQUISITES
  • Understanding of derivatives and differentiation techniques
  • Familiarity with trigonometric identities, specifically secant and tangent functions
  • Knowledge of the chain rule in calculus
  • Ability to manipulate algebraic expressions involving trigonometric functions
NEXT STEPS
  • Study the application of the chain rule in calculus
  • Learn more about trigonometric identities and their proofs
  • Practice differentiating complex trigonometric expressions
  • Explore the implications of derivatives in real-world applications
USEFUL FOR

Students studying calculus, educators teaching differentiation techniques, and anyone seeking to deepen their understanding of trigonometric derivatives.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\displaystyle\frac{d}{dx} sec^2(2x)-tan^2(2x)$

rewriting...

$\displaystyle\frac{1}{cos^2(2x)}-\frac{sin^2(2x)}{cos^2(2x)}$

$\displaystyle\frac{cos^2(2x)}{cos^2(2x)}=1$

$\displaystyle\frac{d}{dx}(1)=0$

I put this in $W|A$ but there were many complicated steps just to get the same answer

how do you use the chain rule on $sec^2(2x)$ and $tan^2(2x)$
 
Physics news on Phys.org
Re: derivative of sec^2(2x)-tan^2(2x)

karush said:
$\displaystyle\frac{d}{dx} sec^2(2x)-tan^2(2x)$

rewriting...

$\displaystyle\frac{1}{cos^2(2x)}-\frac{sin^2(2x)}{cos^2(2x)}$

$\displaystyle\frac{cos^2(2x)}{cos^2(2x)}=1$

$\displaystyle\frac{d}{dx}(1)=0$

I put this in $W|A$ but there were many complicated steps just to get the same answer

how do you use the chain rule on $sec^2(2x)$ and $tan^2(2x)$

What you've done is fine, I don't know why you're worrying.

An alternative is to use the identity \displaystyle \begin{align*} \sec^2{(x)} \equiv 1 + \tan^2{(x)} \end{align*}, giving

\displaystyle \begin{align*} \sec^2{(2x)} - \tan^2{(2x)} &\equiv 1 + \tan^2{(2x)} - \tan^2{(2x)} \\ &\equiv 1 \end{align*}
 
Re: derivative of sec^2(2x)-tan^2(2x)

karush said:
...
how do you use the chain rule on $sec^2(2x)$ and $tan^2(2x)$

Suppose you do not smplify the expression using trigonometric identities before differentiating:

$$\frac{d}{dx}\left(\sec^2(2x)-\tan^2(2x) \right)=$$

Differentiating term by term, using the power and chain rules, we find:

$$2\sec(2x)\cdot\frac{d}{dx}(\sec(2x))-2\tan(2x)\cdot\frac{d}{dx}(\tan(2x))=$$

$$2\sec(2x)\cdot\sec(2x)\tan(2x)\cdot\frac{d}{dx}(2x)-2\tan(2x)\cdot\sec^2(2x)\cdot\frac{d}{dx}(2x)=$$

$$4\sec^2(2x)\tan(2x)-4\sec^2(2x)\tan(2x)=0$$
 
Re: derivative of sec^2(2x)-tan^2(2x)

karush said:
$\displaystyle\frac{d}{dx} sec^2(2x)-tan^2(2x)$
Please use parenthesis when needed. The line above reads:
[math]\frac{d}{dx} \left ( sec^2(2x) \right ) - tan^2(2x)[/math]

not
[math]\frac{d}{dx} \left ( sec^2(2x) - tan^2(2x) \right )[/math]
which is what you wanted.

-Dan
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
955
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
17K