Derivative of -x using first principle

rishi kesh
Messages
35
Reaction score
3

Homework Statement


This is a silly question,but i have a problem.How do we solve derivative of -x using first principle of derivative. I know that if derivative of x w.r.t x is 1 then ofcourse that of -x should be -1. Also it can be solved by product rule taking derivative of -1.x .

Homework Equations

The Attempt at a Solution


Here is how i attempted it:
f(x)= -x
f(x+h)= -x+h
Using first principle :
dy/dx = [-x+h-(-x)]/h
= h/h
= 1
what is wrong here?please help. Thanks in advance:smile::redface:
 
Physics news on Phys.org
f(x+h) = -x-h
 
blue_leaf77 said:
f(x+h) = -x-h
But how does that work? Why it isn't -x+h ?:oldconfused:
 
rishi kesh said:
But how does that work? Why it isn't -x+h ?:oldconfused:

Try ##x = 0## and see what you get.
 
PeroK said:
Try ##x = 0## and see what you get.
Hey! I think i got it!
When, f(x)= x^2
f(x+h)= (x+h)^2
If, f(x)= -x
f(x+h)= -(x+h)
= -x-h
Is this right?
 
  • Like
Likes PeroK
rishi kesh said:
Hey! I think i got it!
When, f(x)= x^2
f(x+h)= (x+h)^2
If, f(x)= -x
f(x+h)= -(x+h)
= -x-h
Is this right?

Quite right.
 
  • Like
Likes rishi kesh
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top