MHB Derivative of y w.r.t x: 242.7x.25

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Dx Trig
Click For Summary
The discussion focuses on finding the derivative of the function y with respect to x, specifically for the expression y = 8ln(x) + √(1-x²)arccos(x). The implicit differentiation of arccos(x) leads to the result that dy/dx = -1/√(1-x²). The conversation emphasizes the use of the product rule in conjunction with this derivative. A clarification is provided on why csc(arccos(x)) equals 1/√(1-x²), reinforcing the relationship between trigonometric identities and derivatives.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{242.7x.25}$
$\textsf{Find the derivative of y with respect to x}$
\begin{align*}\displaystyle
y&=8\ln{x}+\sqrt{1-x^2}\arccos{x} \\
&=\frac{8}{x}+?
\end{align*}
 
Physics news on Phys.org
We could use a table of forumlas here, but let's derive the formula we need. Let:

$$y=\arccos(x)$$

$$\cos(y)=x$$

Implicitly differentiate:

$$-\sin(y)\d{y}{x}=1$$

$$\d{y}{x}=-\csc(y)=-\csc(\arccos(x))=-\frac{1}{\sqrt{1-x^2}}$$

Can you proceed with the product rule?
 
MarkFL said:
We could use a table of forumlas here, but let's derive the formula we need. Let:

$$y=\arccos(x)$$

$$\cos(y)=x$$

Implicitly differentiate:

$$-\sin(y)\d{y}{x}=1$$

$$\d{y}{x}=-\csc(y)=-\csc(\arccos(x))=-\frac{1}{\sqrt{1-x^2}}$$

Can you proceed with the product rule?

As it's not entirely obvious why $\displaystyle \begin{align*} \csc{ \left[ \arccos{ \left( x \right) } \right] } = \frac{1}{\sqrt{1 - x^2}} \end{align*}$

$\displaystyle \begin{align*} \csc{ \left[ \arccos{(x)} \right] } &= \frac{1}{\sin{\left[ \arccos{ (x) } \right] }} \\ &= \frac{1}{\sqrt{ 1 - \left\{ \cos{ \left[ \arccos{(x)} \right] } \right\} ^2 }} \\ &= \frac{1}{\sqrt{1 - x^2}} \end{align*}$
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 16 ·
Replies
16
Views
3K
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K