Derivative: Simplifying an Equation

  • Context: MHB 
  • Thread starter Thread starter needOfHelpCMath
  • Start date Start date
  • Tags Tags
    Derivative
Click For Summary
SUMMARY

The discussion focuses on simplifying the derivative of the equation $$\dfrac{12x\sqrt{2x^3+3x+2}-\frac{\left(6x^2+3\right)^2}{2\sqrt{2x^3+3x+2}}}{2\left(2x^3+3x+2\right)}$$ to $$\frac{12x^4+36x^2+48x-9}{4\left(2x^3+3x+2\right)^{\frac{3}{2}}}$$. The simplification process involves multiplying by $$\frac{2\sqrt{2x^3+3x+2}}{2\sqrt{2x^3+3x+2}}$$ and applying the FOIL method to combine like terms. The final result confirms the accuracy of the simplification steps taken.

PREREQUISITES
  • Understanding of calculus, specifically derivatives
  • Familiarity with algebraic manipulation techniques
  • Knowledge of the FOIL method for binomials
  • Ability to work with square roots and rational expressions
NEXT STEPS
  • Study the rules of differentiation in calculus
  • Practice simplifying complex rational expressions
  • Learn advanced algebra techniques for polynomial manipulation
  • Explore applications of derivatives in real-world scenarios
USEFUL FOR

Students studying calculus, mathematicians focusing on algebraic simplifications, and educators teaching derivative concepts.

needOfHelpCMath
Messages
70
Reaction score
0
How does this equation:

$$\dfrac{12x\sqrt{2x^3+3x+2}-\frac{\left(6x^2+3\right)^2}{2\sqrt{2x^3+3x+2}}}{2\left(2x^3+3x+2\right)}$$

becomes this equation

$${12x^4+36x^2+48x-9}frac{4\left(2x^3+3x+2\right)^\frac{3}{2}}$$
 
Last edited:
Physics news on Phys.org
$$\frac{12x\sqrt{2x^3+3x+2}-\dfrac{\left(6x^2+3\right)^2}{2\sqrt{2x^3+3x+2}}}{2\left(2x^3+3x+2\right)}\cdot\frac{2\sqrt{2x^3+3x+2}}{2\sqrt{2x^3+3x+2}}=\frac{24x(2x^3+3x+2)-(6x^2+3)^2}{4\left(2x^3+3x+2\right)^{\frac{3}{2}}}=\frac{48x^4+72x^2+48x-36x^4-36x^2-9}{4\left(2x^3+3x+2\right)^{\frac{3}{2}}}=\frac{12x^4+36x^2+48x-9}{4\left(2x^3+3x+2\right)^{\frac{3}{2}}}$$
 
MarkFL said:
$$\frac{12x\sqrt{2x^3+3x+2}-\dfrac{\left(6x^2+3\right)^2}{2\sqrt{2x^3+3x+2}}}{2\left(2x^3+3x+2\right)}\cdot\frac{2\sqrt{2x^3+3x+2}}{2\sqrt{2x^3+3x+2}}=\frac{24x(2x^3+3x+2)-(6x^2+3)^2}{4\left(2x^3+3x+2\right)^{\frac{3}{2}}}=\frac{48x^4+72x^2+48x-36x^4-36x^2-9}{4\left(2x^3+3x+2\right)^{\frac{3}{2}}}=\frac{12x^4+36x^2+48x-9}{4\left(2x^3+3x+2\right)^{\frac{3}{2}}}$$

ahh okay i see it now cancels out then foil for the left side then. thank you
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
955
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
Replies
5
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
Replies
2
Views
1K