MHB Derivative: Simplifying an Equation

  • Thread starter Thread starter needOfHelpCMath
  • Start date Start date
  • Tags Tags
    Derivative
Click For Summary
The discussion focuses on simplifying a complex equation involving derivatives. The transformation from the original equation to the simplified form is achieved through algebraic manipulation, including cancellation and the FOIL method. Participants clarify the steps involved, emphasizing the importance of correctly applying these techniques to reach the final result. The simplification ultimately leads to a clearer expression of the equation. Understanding these steps is crucial for mastering derivative simplification.
needOfHelpCMath
Messages
70
Reaction score
0
How does this equation:

$$\dfrac{12x\sqrt{2x^3+3x+2}-\frac{\left(6x^2+3\right)^2}{2\sqrt{2x^3+3x+2}}}{2\left(2x^3+3x+2\right)}$$

becomes this equation

$${12x^4+36x^2+48x-9}frac{4\left(2x^3+3x+2\right)^\frac{3}{2}}$$
 
Last edited:
Physics news on Phys.org
$$\frac{12x\sqrt{2x^3+3x+2}-\dfrac{\left(6x^2+3\right)^2}{2\sqrt{2x^3+3x+2}}}{2\left(2x^3+3x+2\right)}\cdot\frac{2\sqrt{2x^3+3x+2}}{2\sqrt{2x^3+3x+2}}=\frac{24x(2x^3+3x+2)-(6x^2+3)^2}{4\left(2x^3+3x+2\right)^{\frac{3}{2}}}=\frac{48x^4+72x^2+48x-36x^4-36x^2-9}{4\left(2x^3+3x+2\right)^{\frac{3}{2}}}=\frac{12x^4+36x^2+48x-9}{4\left(2x^3+3x+2\right)^{\frac{3}{2}}}$$
 
MarkFL said:
$$\frac{12x\sqrt{2x^3+3x+2}-\dfrac{\left(6x^2+3\right)^2}{2\sqrt{2x^3+3x+2}}}{2\left(2x^3+3x+2\right)}\cdot\frac{2\sqrt{2x^3+3x+2}}{2\sqrt{2x^3+3x+2}}=\frac{24x(2x^3+3x+2)-(6x^2+3)^2}{4\left(2x^3+3x+2\right)^{\frac{3}{2}}}=\frac{48x^4+72x^2+48x-36x^4-36x^2-9}{4\left(2x^3+3x+2\right)^{\frac{3}{2}}}=\frac{12x^4+36x^2+48x-9}{4\left(2x^3+3x+2\right)^{\frac{3}{2}}}$$

ahh okay i see it now cancels out then foil for the left side then. thank you
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
895
  • · Replies 10 ·
Replies
10
Views
2K
Replies
4
Views
4K
Replies
5
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
Replies
2
Views
1K