MHB Derivatives with Quadratic Functions.

AI Thread Summary
The discussion focuses on solving a derivative equation involving quadratic functions. The key equation presented is T'(z) = 0, leading to a series of algebraic manipulations to simplify the expression. The final form reveals a quadratic equation in z, specifically 39z^2 - 128zD + 64D^2 = 0. It is emphasized that differentiation is not needed; instead, the problem requires setting the derivative equal to zero and performing algebraic operations. The main takeaway is the importance of recognizing the problem's requirements and applying algebraic techniques to reach the solution.
Tori No Otoko
Messages
1
Reaction score
0
Screen Shot 2020-05-15 at 11.40.46 pm.png

Slightly confused at what it wants me to do here?
 
Mathematics news on Phys.org
just an algebra drill ...

$T'(z) = 0 \implies \dfrac{z}{\sqrt{80^2+z^2}} = \dfrac{D-z}{\sqrt{50^2+(z-D)^2}}$

$z\sqrt{50^2+(z-D)^2} = (D-z)\sqrt{80^2+z^2}$

$z^2[50^2+(z-D)^2] = (D-z)^2[80^2+z^2]$

$50^2z^2 + z^2(z-D)^2 = 80^2(D-z)^2 + z^2(D-z)^2$

$0 = 80^2(D-z)^2 - 50^2z^2$

$0 = 80^2(D^2 - 2zD + z^2) - 50^2z^2$

$0 = 80^2D^2 - 80^2 \cdot 2zD + (80^2-50^2)z^2$

$0 = 6400(D^2-2zD) + 3900z^2$

$0 = 64(D^2-2zD) + 39z^2$

$0 = 39z^2 - 128zD + 64D^2$
 
Notice that the problem gives you T', not T. It is not necessary to differentiate. Just set it equal to 0 and do the algebra to get the final result.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
3
Views
1K
Replies
6
Views
2K
Replies
6
Views
2K
Replies
2
Views
1K
Replies
4
Views
2K
Back
Top