Deriving Einstein Eq. from Variational Principle

Click For Summary
The discussion revolves around deriving an equation related to the Christoffel symbols from the variational principle as outlined in Carroll's "Intro to Spacetime and Geometry." The user initially encounters issues with index matching during their calculations, leading to confusion about the correctness of their results. After re-evaluating their work, they identify a typo in the indices but still struggle to reconcile their findings with the required equation. Despite breaking down the terms and attempting to simplify, they express uncertainty about whether their derived equations correctly support the original statement. The conversation highlights the complexities involved in tensor calculus and the importance of precise index notation in such derivations.
rezkyputra
Messages
5
Reaction score
2

Homework Statement


Okay, in Carrol's Intro to Spacetime and Geometry, Chapter 4, Eq. 4.63 to 4.65 require a derivation of a difference between Christoffel Symbol. I did the calculation and found my answer to be somewhat correct in form, but the indices doesn't match up

Homework Equations


So we need someway to change this prove this eq.
\begin{equation}
g^{ab} \delta \Gamma_{bc}^a - g^{ad}\delta \Gamma_{ac}^c = g_{ab} \, \nabla^d \, \delta g^{ab} - \nabla_c \, \delta g^{dc}
\end{equation}

also the variation of Chirstoffel Symbol is:

\begin{equation}
\delta \Gamma_{bc}^a = -\frac{1}{2} \left(g_{qc} \, \nabla_b \, \delta g^{aq} + g_{qb} \, \nabla_c \, \delta g^{aq} - g_{rb} \, g_{sc} \, \nabla^a \, \delta g^{rs} \right)
\end{equation}

The Attempt at a Solution


So first I'll break that into the first and second term

First Term
\begin{align}
\delta \Gamma_{bc}^a &= \frac{1}{2} \left( - g_{qb} \, \nabla_a \, \delta g^{dq} - g_{qa} \, \nabla_b \, \delta g^{dq} + g_{ra} \, g_{sb} \, \nabla^d \, \delta g^{rs} \right) \nonumber \\
g^{ab} \delta \Gamma_{bc}^a &= \frac{1}{2} \left( - g_{qb} \, g^{ab} \, \nabla_a \, \delta g^{dq} - g_{qa} \, g^{ab} \, \nabla_b \, \delta g^{dq} + g_{ra} \, g_{sb} \, g^{ab} \, \nabla^d \, \delta g^{rs} \right) \nonumber \\
g^{ab} \delta \Gamma_{bc}^a &= \frac{1}{2} \left( - g_{qb} \, g^{ab} \, \nabla_a \, \delta g^{dq} - g_{qa} \, g^{ab} \, \nabla_b \, \delta g^{dq} + g_{ra} \, g_{sb} \, \frac{1}{2} \left[g^{ab} + g^{ab} \right] \, \nabla^d \, \delta g^{rs} \right) \nonumber \\
&= \frac{1}{2} \left( - \delta_q^a \, \nabla_a \, \delta g^{dq} - \delta_q^b \, \nabla_b \, \delta g^{dq} + \frac{1}{2} \left[\delta_r^b \, g_{sb} + \delta_s^a \, g_{ra}\right] \, \nabla^d \, \delta g^{rs} \right) \nonumber \\
&= \frac{1}{2} \left(- \nabla_q \, \delta g^{dq} - \nabla_q \, \delta g^{dq} + \, g_{ab} \, \nabla^d \, \delta g^{ab} \right) \nonumber \\
&= - \nabla_q \, \delta g^{dq} + \frac{1}{2} \, g_{ab} \, \nabla^d \, \delta g^{ab} \nonumber \\
&q \ is \ "loose" \ so \ just \ set \ it \ equal \ to \ c \\
&= - \nabla_c \, \delta g^{dc} + \frac{1}{2} \, g_{ab} \, \nabla^d \, \delta g^{ab} \nonumber \\
\end{align}

Second Term

\begin{align}
- \delta \Gamma_{ac}^c &= \frac{1}{2} \left(g_{qc} \, \nabla_a \, \delta g^{cq} + g_{qa} \, \nabla_c \, \delta g^{cq} - g_{ra} \, g_{sc} \, \nabla^c \, \delta g^{rs} \right) \nonumber \\
- g^{ad}\delta \Gamma_{ac}^c &= \frac{1}{2} \left(g_{qc} \, g^{ad} \, \nabla_a \, \delta g^{cq} + g_{qa} \, g^{ad} \, \nabla_c \, \delta g^{cq} - g_{ra} \, g_{sc} \, g^{ad} \, \nabla^c \, \delta g^{rs} \right) \nonumber \\
&= \frac{1}{2} \left(g_{qc} \, \nabla^d \, \delta g^{cq} + \delta_q^d \, \nabla_c \, \delta g^{cq} -\delta_r^d \, \nabla_s \, \delta g^{rs} \right) \nonumber \\
&= \frac{1}{2} \left(g_{qc} \, \nabla^d \, \delta g^{cq} + \nabla_c \, \delta g^{cd} - \nabla_s \, \delta g^{ds} \right) \nonumber \\
&s \ is \ "loose" \ so \ just \ set \ it \ equal \ to \ c \\
&= \frac{1}{2} g_{qc} \, \nabla^d \, \delta g^{cq}
\end{align}

Now those two term adds up into

\begin{align}
&= \frac{1}{2} g_{qc} \, \nabla^d \, \delta g^{cq} + \frac{1}{2} \, g_{ab} \, \nabla^d \, \delta g^{ab} - \nabla_c \, \delta g^{dc}
\end{align}

Soo the last term is correct, but the first two, whila having the same form as the answer, their indices doesn't add up (i think)

so did i miss something? or are there anything wrong in my calculation?

Thanks in advance
 
Physics news on Phys.org
Welcome to PF!
rezkyputra said:

Homework Equations


So we need someway to change this prove this eq.
\begin{equation}
g^{ab} \delta \Gamma_{bc}^a - g^{ad}\delta \Gamma_{ac}^c = g_{ab} \, \nabla^d \, \delta g^{ab} - \nabla_c \, \delta g^{dc}
\end{equation}
First term on left is not written correctly. You have ##a## as an upper index twice.

The Attempt at a Solution


So first I'll break that into the first and second term

First Term
\begin{align}
\delta \Gamma_{bc}^a &= \frac{1}{2} \left( - g_{qb} \, \nabla_a \, \delta g^{dq} - g_{qa} \, \nabla_b \, \delta g^{dq} + g_{ra} \, g_{sb} \, \nabla^d \, \delta g^{rs} \right) \nonumber \\

\end{align}
You have ##a## as an upper index on the left but lower on the right.
 
Okay, it was a typo, i got it correct indices on my notes

so let me retype it

\begin{align}
\delta \Gamma_{ab}^d &= \frac{1}{2} \left( - g_{qb} \, \nabla_a \, \delta g^{dq} - g_{qa} \, \nabla_b \, \delta g^{dq} + g_{ra} \, g_{sb} \, \nabla^d \, \delta g^{rs} \right) \nonumber \\
g^{ab} \delta \Gamma_{ab}^d &= \frac{1}{2} \left( - g_{qb} \, g^{ab} \, \nabla_a \, \delta g^{dq} - g_{qa} \, g^{ab} \, \nabla_b \, \delta g^{dq} + g_{ra} \, g_{sb} \, g^{ab} \, \nabla^d \, \delta g^{rs} \right) \nonumber \\
g^{ab} \delta \Gamma_{ab}^d &= \frac{1}{2} \left( - g_{qb} \, g^{ab} \, \nabla_a \, \delta g^{dq} - g_{qa} \, g^{ab} \, \nabla_b \, \delta g^{dq} + g_{ra} \, g_{sb} \, \frac{1}{2} \left[g^{ab} + g^{ab} \right] \, \nabla^d \, \delta g^{rs} \right) \nonumber \\
&= \frac{1}{2} \left( - \delta_q^a \, \nabla_a \, \delta g^{dq} - \delta_q^b \, \nabla_b \, \delta g^{dq} + \frac{1}{2} \left[\delta_r^b \, g_{sb} + \delta_s^a \, g_{ra}\right] \, \nabla^d \, \delta g^{rs} \right) \nonumber \\
&= \frac{1}{2} \left(- \nabla_q \, \delta g^{dq} - \nabla_q \, \delta g^{dq} + \, g_{ab} \, \nabla^d \, \delta g^{ab} \right) \nonumber \\
&= - \nabla_q \, \delta g^{dq} + \frac{1}{2} \, g_{ab} \, \nabla^d \, \delta g^{ab} \nonumber \\
\label{eq:8}
&= - \nabla_c \, \delta g^{dc} + \frac{1}{2} \, g_{ab} \, \nabla^d \, \delta g^{ab}
\end{align}

Second Term
\begin{align}
- \delta \Gamma_{ac}^c &= \frac{1}{2} \left(g_{qc} \, \nabla_a \, \delta g^{cq} + g_{qa} \, \nabla_c \, \delta g^{cq} - g_{ra} \, g_{sc} \, \nabla^c \, \delta g^{rs} \right) \nonumber \\
- g^{ad}\delta \Gamma_{ac}^c &= \frac{1}{2} \left(g_{qc} \, g^{ad} \, \nabla_a \, \delta g^{cq} + g_{qa} \, g^{ad} \, \nabla_c \, \delta g^{cq} - g_{ra} \, g_{sc} \, g^{ad} \, \nabla^c \, \delta g^{rs} \right) \nonumber \\
&= \frac{1}{2} \left(g_{qc} \, \nabla^d \, \delta g^{cq} + \delta_q^d \, \nabla_c \, \delta g^{cq} -\delta_r^d \, \nabla_s \, \delta g^{rs} \right) \nonumber \\
&= \frac{1}{2} \left(g_{qc} \, \nabla^d \, \delta g^{cq} + \nabla_c \, \delta g^{cd} - \nabla_s \, \delta g^{ds} \right) \nonumber \\
\label{eq:9}
&= \frac{1}{2} g_{qc} \, \nabla^d \, \delta g^{cq}
\end{align}

they both still doesn't prove this eq

\begin{equation}
\label{eq:10}
g^{ab} \delta \Gamma_{ab}^d - g^{ad}\delta \Gamma_{ac}^c = g_{ab} \, \nabla^d \, \delta g^{ab} - \nabla_c \, \delta g^{dc}
\end{equation}

They still doesn't add up!
 
I believe eq's 8 and 9 do add to give eq. 10.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
6K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K