Deriving laplacian in spherical coordinates

  • Thread starter mooshasta
  • Start date
  • #1
31
0
Hey...

Could someone help me out with deriving the LaPlacian in spherical coordinates? I tried using the chain rule but it just isn't working out well.. any sort of hint would be appriciated. :)

[tex] \nabla^2 = \frac{1}{r^2} [ \frac{\partial}{\partial r} ( r^2 \frac{\partial}{\partial r} ) + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} ( \sin \theta \frac{\partial}{\partial \theta\ ) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} ] [/tex]
 
Last edited:

Answers and Replies

  • #2
682
1
I want to understand the derivation too. I understand the gradient in spherical coordinate, but the divergence formula bothers me. I got some info from some website saying that one can find a basis of vectors where its divergence is zero then take the divergence of the function based on those vectors....
 
  • #4
arildno
Science Advisor
Homework Helper
Gold Member
Dearly Missed
10,025
134
That's one way of doing it.
Here's another one:
[tex]\vec{i}_{r}=\sin\phi\cos\theta\vec{i}+\sin\phi\sin\theta\vec{j}+\cos\phi\vec{k}, \vec{i}_\phi}=\frac{\partial\vec{i}_{r}}{\partial\phi}=\cos\phi\cos\theta\vec{i}+\cos\phi\sin\theta\vec{j}-\sin\phi\vec{k},\vec{i}_{\theta}=\frac{1}{\sin\phi}\frac{\partial\vec{i}_{r}}{\partial\theta}=-\sin\theta\vec{i}+\cos\theta\vec{j}[/tex]
along with:
[tex]\frac{\partial\vec{i}_{r}}{\partial{r}}=\frac{\partial\vec{i}_{\phi}}{\partial{r}}=\frac{\partial\vec{i}_{\theta}}{\partial{r}}=\vec{0}[/tex]
[tex]\frac{\partial\vec{i}_{\theta}}{\partial\phi}=\vec{0},\frac{\partial\vec{i}_{\phi}}{\partial\phi}=-\vec{i}_{r}[/tex]
[tex]\frac{\partial\vec{i}_{\phi}}{\partial\theta}=\cos\phi\vec{i}_{\theta},\frac{\partial\vec{i}_{\theta}}{\partial\theta}=-\sin\phi\vec{i}_{r}-\cos\phi\vec{i}_{\phi}[/tex]

Now, given these relations, along with the expression for the gradient in spherical coordinates [tex]\nabla=\vec{i}_{r}\frac{\partial}{\partial{r}}+\vec{i}_{\phi}\frac{1}{r}\frac{\partial}{\partial\phi}+\vec{i}_{\theta}\frac{1}{r\sin\phi}\frac{\partial}{\partial\theta}[/tex], we may easily derive the expression for the Laplacian by differentiating, and performing the dot products:
[tex]\nabla^{2}=\nabla\cdot\nabla=\vec{i}_{r}\cdot\frac{\partial\nabla}{\partial{r}}+\frac{1}{r}\vec{i}_{\phi}\cdot\frac{\partial\nabla}{\partial\phi}+\frac{1}{r\sin\phi}\vec{i}_{\theta}\cdot\frac{\partial\nabla}{\partial\theta}[/tex]
 
Last edited:

Related Threads on Deriving laplacian in spherical coordinates

Replies
9
Views
138
Replies
3
Views
2K
Replies
1
Views
4K
Replies
3
Views
2K
Replies
1
Views
191
  • Last Post
Replies
3
Views
2K
  • Last Post
Replies
3
Views
1K
  • Last Post
Replies
2
Views
5K
  • Last Post
Replies
2
Views
881
Replies
7
Views
9K
Top