# Deriving laplacian in spherical coordinates

Hey...

Could someone help me out with deriving the LaPlacian in spherical coordinates? I tried using the chain rule but it just isn't working out well.. any sort of hint would be appriciated. :)

$$\nabla^2 = \frac{1}{r^2} [ \frac{\partial}{\partial r} ( r^2 \frac{\partial}{\partial r} ) + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} ( \sin \theta \frac{\partial}{\partial \theta\ ) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} ]$$

Last edited:

I want to understand the derivation too. I understand the gradient in spherical coordinate, but the divergence formula bothers me. I got some info from some website saying that one can find a basis of vectors where its divergence is zero then take the divergence of the function based on those vectors....

arildno
Homework Helper
Gold Member
Dearly Missed
That's one way of doing it.
Here's another one:
$$\vec{i}_{r}=\sin\phi\cos\theta\vec{i}+\sin\phi\sin\theta\vec{j}+\cos\phi\vec{k}, \vec{i}_\phi}=\frac{\partial\vec{i}_{r}}{\partial\phi}=\cos\phi\cos\theta\vec{i}+\cos\phi\sin\theta\vec{j}-\sin\phi\vec{k},\vec{i}_{\theta}=\frac{1}{\sin\phi}\frac{\partial\vec{i}_{r}}{\partial\theta}=-\sin\theta\vec{i}+\cos\theta\vec{j}$$
along with:
$$\frac{\partial\vec{i}_{r}}{\partial{r}}=\frac{\partial\vec{i}_{\phi}}{\partial{r}}=\frac{\partial\vec{i}_{\theta}}{\partial{r}}=\vec{0}$$
$$\frac{\partial\vec{i}_{\theta}}{\partial\phi}=\vec{0},\frac{\partial\vec{i}_{\phi}}{\partial\phi}=-\vec{i}_{r}$$
$$\frac{\partial\vec{i}_{\phi}}{\partial\theta}=\cos\phi\vec{i}_{\theta},\frac{\partial\vec{i}_{\theta}}{\partial\theta}=-\sin\phi\vec{i}_{r}-\cos\phi\vec{i}_{\phi}$$

Now, given these relations, along with the expression for the gradient in spherical coordinates $$\nabla=\vec{i}_{r}\frac{\partial}{\partial{r}}+\vec{i}_{\phi}\frac{1}{r}\frac{\partial}{\partial\phi}+\vec{i}_{\theta}\frac{1}{r\sin\phi}\frac{\partial}{\partial\theta}$$, we may easily derive the expression for the Laplacian by differentiating, and performing the dot products:
$$\nabla^{2}=\nabla\cdot\nabla=\vec{i}_{r}\cdot\frac{\partial\nabla}{\partial{r}}+\frac{1}{r}\vec{i}_{\phi}\cdot\frac{\partial\nabla}{\partial\phi}+\frac{1}{r\sin\phi}\vec{i}_{\theta}\cdot\frac{\partial\nabla}{\partial\theta}$$

Last edited: