Deriving Newtonian law of gravitation

I agree that the OP's source is incorrect in several other ways. Better to stick to reliable texts or online sites.f
  • #1
254
5

Homework Statement


upload_2016-5-29_21-48-53.png


Homework Equations


$$\frac{\omega}{v}=\frac{s}{r}$$

The Attempt at a Solution


How to get the equation above? Cause
$$\frac{s}{r}=\omega$$ & $$\frac{\omega}{v}=\frac{1}{r}$$ since v=rw.

Source: http://www.relativitycalculator.com/Newton_Universal_Gravity_Law.shtml
 
  • #2

Homework Statement


2. Homework Equations [/B]
$$\frac{\omega}{v}=\frac{s}{r}$$
This is not a correct equation. You can see that from the dimensions. LS = 1/distance and RS = distance / distance. Your source is not very well written and takes incomprehensible mathematical steps that appear to me to be wrong.

AM
 
  • #3
This is not a correct equation. You can see that from the dimensions. LS = 1/distance and RS = distance / distance. Your source is not very well written and takes incomprehensible mathematical steps that appear to me to be wrong.

AM
Thanks! That's what I thought so. But without that step, I cannot continue and the subsequent steps that the source provides are useless in helping me to derive the Newtonian law of gravitation. Is there a correct way to derive the Newtonian laws of gravitation?
 
  • #4
The author is trying to show how Kepler's laws lead to the ##F \propto 1/r^2## relationship for circular orbits.

I am not sure what the author of your source is trying to show with Kepler's second law. You can find the derivation of centripetal force in any first year physics textbook: ##a_c = v^2/r = \omega^2 r##.

From Kepler's third law, ##r^3 \propto T^2 \text{ or } \frac{r^3}{T^2} = \text{ constant}##. Since ##\omega = 2\pi/T## this means that ##r^3\omega^2 = K## or ##\omega^2 = \frac{K}{r^3}##

The gravitational force provides the centripetal force required for circular orbit, so ##g=v^2/r = \omega^2 r##, this means that ##g = Kr/r^3 = K/r^2##

AM
 
  • #5
The angular velocity omega is r x v. The angular momentum vector is not even in the plane of the orbit. The angular momentum is normal to the plane of orbit. This source is clearly incorrect.
 
  • #6
Sorry for the last post I was thinking of (specific) angular momentum not the angular velocity. I still think the source is unclear. A better explanation can be found in many textbooks.
 
  • #7
Sorry for the last post I was thinking of (specific) angular momentum not the angular velocity. I still think the source is unclear. A better explanation can be found in many textbooks.
Your first post was correct. The direction of ##\vec{\omega}## is in the same direction as the angular momentum vector: perpendicular to the plane of rotation:

(1) ##\vec{L} = I\vec{\omega}##

and for a point mass
(2) ##\vec{L} = \vec{r} \times \vec{p}##

so:
(3) ##\vec{\omega} = \frac{\vec{L}}{I} = \frac{\vec{r} \times \vec{p}}{I}##

Since, for a point mass: ##I = m|\vec{r}|^2##, for a point mass (3) can be rewritten:
##\vec{\omega} =\frac{\vec{r} \times \vec{p}}{m|\vec{r}|^2} = \frac{\vec{r} \times \vec{v}}{|\vec{r}|^2}##

I agree that the OP's source is incorrect in several other ways. Better to stick to reliable texts or online sites.

AM
 

Suggested for: Deriving Newtonian law of gravitation

Back
Top