Hello,(adsbygoogle = window.adsbygoogle || []).push({});

I would like to ask you some questions.

1) I've a closed curve (for example an ellipse, which may represent the contour of an object) represented by the set of its (known) points. I need to find the equation of that curve to pass through all and every point (exact fit). I think that to do this I need a polynomial whose grade is equal to the number of points less 1.

Something like this:

a0+a1 x1+a2 x1^2+ ...+ an x1^n = y1

a0+a2 x2+a2 x2^2+ ...+ an x2^n = y2

...

a0+a2 xn+a2 xn^2+ ...+ an xn^n = yn

This argument is right? Do you have suggestions (or anything else relevant) for me in this regard for which is the best way to solve my problem? This equation can be made in parametric form?

2) After I got the exact equation of this curve. Suppose we have a set of curves very similar to each other (represented by their equation), I would like to find the equation that represents the shape which best approaches to all previous curves, a sort of average curve created from those previously acquired.

Do you know if this thing can be done and how? What is the best way (most efficient and / or mathematically more correct) to do this?

Best Regards,

Giusy

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Deriving the equation of points for exact fitting and shape analysis

Loading...

Similar Threads - Deriving equation points | Date |
---|---|

I What is the covariant derivative of the position vector? | Feb 18, 2018 |

I Lie derivative of a metric determinant | Dec 22, 2017 |

I Covariant derivative of Ricci scalar causing me grief! | Nov 26, 2017 |

A Covariant derivative only for tensor | Sep 23, 2017 |

Deriving the Implicit Equation of a Rotated Spheroid | Jul 31, 2005 |

**Physics Forums - The Fusion of Science and Community**