Deriving the Henderson-Hasselbalch equation

Click For Summary

Discussion Overview

The discussion revolves around the derivation of the Henderson-Hasselbalch equation, focusing on the relationships between weak acids, their conjugate bases, and the definitions of pH and pKa. Participants explore the mathematical steps involved in the derivation and clarify concepts related to acid-base chemistry.

Discussion Character

  • Technical explanation
  • Conceptual clarification
  • Homework-related

Main Points Raised

  • One participant expresses difficulty in understanding the derivation equations and the concept of conjugate acids and bases.
  • Another participant asks for clarification on which specific steps are confusing and checks for familiarity with the definitions of Ka and pH.
  • A participant suggests writing out definitions of pH and pKa to aid understanding and provides an example of a conjugate base.
  • One participant points out a missing line in the derivation, explaining the importance of showing each mathematical step clearly to avoid confusion.
  • Another participant elaborates on the use of logarithms in the context of weak acids and how negative logs are used for pKa and pH, providing numerical examples to illustrate the point.
  • A later reply indicates that the explanation was helpful to the original poster.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the derivation steps, as some express confusion while others provide clarifications. The discussion remains unresolved regarding the complete understanding of the derivation process.

Contextual Notes

Some participants mention missing steps in the derivation, which may depend on their individual understanding of logarithmic properties and acid-base definitions. There is also a reliance on specific mathematical transformations that may not be universally clear.

Huzaifa
Messages
40
Reaction score
2
Im not able to understand the derivation equations and all please.
$$
\begin{aligned}
\mathrm{HA}+& \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{A}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \\
K_{\mathrm{a}} &=\frac{\left[\mathrm{A}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{[\mathrm{HA}]} \\
K_{\mathrm{a}} &=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \times \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \\
K_{\mathrm{a}} &=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \times \frac{[\text { conjugate base }]}{[\text { acid }]} \\
-\log _{10} \mathrm{~K}_{\mathrm{a}} &=-\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]-\text {log }_{10} \frac{[\text { conjugate base }]}{[\text { acid }]} \\
\mathrm{pK}_{\mathrm{a}} &=\mathrm{pH}-\log _{10} \frac{[\text { conjugate base }]}{[\text { acid }]} \\
\mathrm{pH} &=\mathrm{pK}_{\mathrm{a}}+\log _{10} \frac{[\text { conjugate base }]}{[\text { acid }]}
\end{aligned}
$$
 
Chemistry news on Phys.org
Which steps are you having trouble with? Are you familiar with the definitions of ##K_a## and ##\text{pH}##?
 
TeethWhitener said:
Which steps are you having trouble with? Are you familiar with the definitions of ##K_a## and ##\text{pH}##?
I think I know those definitions, I am having trouble with conjugate acid base thing and the positive and negative signs.
 
Can you write out the definitions of ##\text{pH}## and ##\text{pK}_\text{a}##? Can you tell me what a conjugate acid or base is? For example, if I give you ##HCl## as an acid, can you tell me its conjugate base?
 
Last edited:
  • Like
Likes   Reactions: jim mcnamara
A = Anion

HA —> H+ + A-

Ionic compound —> Cation + Anion
 
You are missing a line in your set of equations
simplest example I can think of:
28 = 4 x 7
so log 28 = log4 + log7 <=== this is the equivalent missing line
so -log28 = -log4 - log7 - changing the signs on each side for each part of the equation

Your text is the equivalent of going straight from 28 = 4x7 to -log28 = -log4 - log7, so there are two changes on a single line which always leads to confusion, yet mathematicians seem to do this all the time to save writing lots of lines that other experts can instantly see are obvious

The switch to logs is because for weak acids (there are only four or six strong acids - where acids means forms H+ ions) we end up dealing with numbers like 2.309 x (10 to power of -5) ( which can be written as 2.309e-5 or in normal life as 0.00002309)
But with logs we get a simple number -4.63657606708
And then for some reason which I can't remember just now, we use negative logs for the pKa (and for pH)
This gives us 4.63657606708, which we then normally only write to one or two decimal places
ie the pKa = 4.6 or pKa = 4.63

Does this help a bit?
 
Last edited:
  • Like
Likes   Reactions: Huzaifa
DrJohn said:
You are missing a line in your set of equations
simplest example I can think of:
28 = 4 x 7
so log 28 = log4 + log7 <=== this is the equivalent missing line
so -log28 = -log4 - log7 - changing the signs on each side for each part of the equation

Your text is the equivalent of going straight from 28 = 4x7 to -log28 = -log4 - log7, so there are two changes on a single line which always leads to confusion, yet mathematicians seem to do this all the time to save writing lots of lines that other experts can instantly see are obvious

The switch to logs is because for weak acids (there are only four or six strong acids - where acids means forms H+ ions) we end up dealing with numbers like 2.309 x (10 to power of -5) ( which can be written as 2.309e-5 or in normal life as 0.00002309)
But with logs we get a simple number -4.63657606708
And then for some reason which I can't remember just now, we use negative logs for the pKa (and for pH)
This gives us 4.63657606708, which we then normally only write to one or two decimal places
ie the pKa = 4.6 or pKa = 4.63

Does this help a bit?
Yes sir, It was helpful!
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
7
Views
3K
Replies
46
Views
6K