Deriving the Solution to $$\frac{\partial}{\partial \phi^{*}}$$

  • Thread starter Thread starter Irishdoug
  • Start date Start date
  • Tags Tags
    deriving Phi
Click For Summary
The discussion centers on deriving the solution for the derivative $$\frac{\partial}{\partial \phi^{*}}$$ of a specific expression involving sums of products of variables and a Hamiltonian matrix. The original poster struggles with applying the product and quotient rules effectively to reach the desired solution. A suggestion is made to simplify the notation by representing the variables as a column vector and reformulating the energy expression. The approach involves varying the vector and analyzing the change in energy to derive the necessary conditions for the derivative to vanish. Completing the proof requires showing that the change in energy is zero to first order for all variations of the vector.
Irishdoug
Messages
102
Reaction score
16
Homework Statement
We would like to find the lowest energy tight binding wavefunction of the form ##\ket{\Psi} = \sum_{n} \phi_{n} \ket{n}##
Relevant Equations
##H \phi = E \phi##

##\phi## is the vector of N co-efficients and H is the N by N matrix ##H_{n,m} = \bra{n} H \ket{m}##

We construct the energy ##E = \frac{\bra{\psi} H \ket{psi}}{\bra{\psi}\ket{\psi}}## and minimise it with respect to each ##\phi_{n}## to reproduce the eigenvalue equation ##H \phi = E \phi##
The solution can be viewed here on page 41

https://usermanual.wiki/Document/St...ford20University20Press202015.1463186034/view

What I have is

$$\frac{\partial}{\partial \phi^{*}} (\frac{\sum_{n,m} \phi_{n}^{*} H_{n,m}\phi_{n}} {\sum_{n} \phi_{n}^{*} \phi_{n}}) = 0$$

I have access to the solution but I have no idea how this derivative is carried out. I have tried the product rule (where ##\phi_{n}## is considered constant) and quotient rule but neither work to give this solution:

$$\frac{\sum_{n} \phi_{m} H_{n,m}}{\sum_{p}\phi_{p}^{2}} - (\frac{\sum_{n,m} \phi_{n}^{*} H_{n,m}\phi_{n}} {\sum_{n} \phi_{n}^{*} \phi_{n}}) \frac{\phi_{n}}{\sum_{p}\phi_{p}^{*}\phi_{p}} = 0$$

Thankyou for your help.
 
Physics news on Phys.org
Please show your work. It isn't very helpful to say "I tried X, but it didn't work." Think about how helpful it would be to you if someone replied with only "Well, I tried X and it did work."

What did you get when you differentiated the numerator with respect to ##\phi_n^*##?
 
The notation is messy and prone to mistakes. Write instead ##\mathbf{x} = (\phi_1, \dots, \phi_n)^T## as a column vector containing the numbers ##\phi_n## and write the energy as\begin{align*}
E(\mathbf{x}) = \frac{\mathbf{x}^{\dagger} H \mathbf{x}}{\mathbf{x}^{\dagger} \mathbf{x}}
\end{align*}Now you vary the vector ##\mathbf{x} \mapsto \mathbf{x} + \delta \mathbf{x}##, where ##\delta \mathbf{x} = (\delta \phi_1, \dots, \delta \phi_n)^T##, giving
\begin{align*}
\delta E \equiv E(\mathbf{x} + \delta \mathbf{x}) - E(\mathbf{x}) = \frac{(\mathbf{x}^{\dagger} + \delta \mathbf{x}^{\dagger})H(\mathbf{x} + \delta \mathbf{x})}{(\mathbf{x}^{\dagger} + \delta \mathbf{x}^{\dagger})(\mathbf{x} + \delta \mathbf{x})} - E(\mathbf{x})
\end{align*}Can you complete the proof by imposing that ##\delta E## vanishes to first order for all possible ##\delta \mathbf{x}##?
 
Last edited:
I want to find the solution to the integral ##\theta = \int_0^{\theta}\frac{du}{\sqrt{(c-u^2 +2u^3)}}## I can see that ##\frac{d^2u}{d\theta^2} = A +Bu+Cu^2## is a Weierstrass elliptic function, which can be generated from ##\Large(\normalsize\frac{du}{d\theta}\Large)\normalsize^2 = c-u^2 +2u^3## (A = 0, B=-1, C=3) So does this make my integral an elliptic integral? I haven't been able to find a table of integrals anywhere which contains an integral of this form so I'm a bit stuck. TerryW

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
3
Views
3K
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
7K
Replies
9
Views
2K
  • · Replies 7 ·
Replies
7
Views
6K
Replies
13
Views
2K