Deriving the Solution to $$\frac{\partial}{\partial \phi^{*}}$$

  • Thread starter Thread starter Irishdoug
  • Start date Start date
  • Tags Tags
    deriving Phi
Irishdoug
Messages
102
Reaction score
16
Homework Statement
We would like to find the lowest energy tight binding wavefunction of the form ##\ket{\Psi} = \sum_{n} \phi_{n} \ket{n}##
Relevant Equations
##H \phi = E \phi##

##\phi## is the vector of N co-efficients and H is the N by N matrix ##H_{n,m} = \bra{n} H \ket{m}##

We construct the energy ##E = \frac{\bra{\psi} H \ket{psi}}{\bra{\psi}\ket{\psi}}## and minimise it with respect to each ##\phi_{n}## to reproduce the eigenvalue equation ##H \phi = E \phi##
The solution can be viewed here on page 41

https://usermanual.wiki/Document/St...ford20University20Press202015.1463186034/view

What I have is

$$\frac{\partial}{\partial \phi^{*}} (\frac{\sum_{n,m} \phi_{n}^{*} H_{n,m}\phi_{n}} {\sum_{n} \phi_{n}^{*} \phi_{n}}) = 0$$

I have access to the solution but I have no idea how this derivative is carried out. I have tried the product rule (where ##\phi_{n}## is considered constant) and quotient rule but neither work to give this solution:

$$\frac{\sum_{n} \phi_{m} H_{n,m}}{\sum_{p}\phi_{p}^{2}} - (\frac{\sum_{n,m} \phi_{n}^{*} H_{n,m}\phi_{n}} {\sum_{n} \phi_{n}^{*} \phi_{n}}) \frac{\phi_{n}}{\sum_{p}\phi_{p}^{*}\phi_{p}} = 0$$

Thankyou for your help.
 
Physics news on Phys.org
Please show your work. It isn't very helpful to say "I tried X, but it didn't work." Think about how helpful it would be to you if someone replied with only "Well, I tried X and it did work."

What did you get when you differentiated the numerator with respect to ##\phi_n^*##?
 
The notation is messy and prone to mistakes. Write instead ##\mathbf{x} = (\phi_1, \dots, \phi_n)^T## as a column vector containing the numbers ##\phi_n## and write the energy as\begin{align*}
E(\mathbf{x}) = \frac{\mathbf{x}^{\dagger} H \mathbf{x}}{\mathbf{x}^{\dagger} \mathbf{x}}
\end{align*}Now you vary the vector ##\mathbf{x} \mapsto \mathbf{x} + \delta \mathbf{x}##, where ##\delta \mathbf{x} = (\delta \phi_1, \dots, \delta \phi_n)^T##, giving
\begin{align*}
\delta E \equiv E(\mathbf{x} + \delta \mathbf{x}) - E(\mathbf{x}) = \frac{(\mathbf{x}^{\dagger} + \delta \mathbf{x}^{\dagger})H(\mathbf{x} + \delta \mathbf{x})}{(\mathbf{x}^{\dagger} + \delta \mathbf{x}^{\dagger})(\mathbf{x} + \delta \mathbf{x})} - E(\mathbf{x})
\end{align*}Can you complete the proof by imposing that ##\delta E## vanishes to first order for all possible ##\delta \mathbf{x}##?
 
Last edited:
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top