Deriving the structure constants of the SO(n) group

Click For Summary

Discussion Overview

The discussion focuses on deriving the structure constants of the ##\mathfrak{so(n)}## Lie algebra, particularly in relation to the ##so(3)## algebra. Participants explore the commutation relations, the properties of the generators, and the relationships between the structure constants of different Lie algebras. The discussion includes technical derivations and attempts to clarify the connections between these mathematical structures.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents the commutation relations for the ##\mathfrak{so(n)}## Lie algebra and seeks to show that the structure constants are given by a specific formula.
  • Another participant suggests expanding the right-hand side of the commutation relations to derive the form of the structure constants.
  • Several participants discuss the redundancy of certain generators in the ##so(3)## algebra and confirm that the generators are antisymmetric.
  • One participant attempts to relate the structure constants of ##\mathfrak{so(n)}## to those of ##so(3)## but encounters difficulties in showing the equivalence under specific mappings.
  • Another participant proposes a method to compute the structure constants using the invariant ##\epsilon_{ijk}## and discusses the resulting factors in the expressions.
  • Participants engage in a back-and-forth regarding the presence of a factor of 4 in their results and explore adjustments to their definitions to resolve this issue.

Areas of Agreement / Disagreement

Participants express varying degrees of understanding and agreement on the properties of the generators and the structure constants. However, there is no consensus on the resolution of the factor of 4 in the computations, indicating ongoing debate and exploration of the topic.

Contextual Notes

Some participants note the need for careful handling of factors in their derivations and mappings, suggesting that assumptions about the relationships between the structure constants may need to be revisited.

spaghetti3451
Messages
1,311
Reaction score
31
The commutation relations for the ##\mathfrak{so(n)}## Lie algebra is:##([A_{ij},A_{mn}])_{st} = -i(A_{j[m}\delta_{n]i}-A_{i[m}\delta_{n]j})_{st}##.where the generators ##(A_{ab})_{st}## of the ##\mathfrak{so(n)}## Lie algebra are given by:##(A_{ab})_{st} = -i(\delta_{as}\delta_{bt}-\delta_{at}\delta_{bs}) = -i\delta_{s[a}\delta_{b]t}##

where ##a,b## label the number of the generator, and ##s,t## label the matrix element.I would like to show that the structure constants ##f_{ij,mn}^{ks}## of the ##\mathfrak{so(n)}## Lie algebra such that##[A_{ij},A_{mn}] = if_{ij,mn}^{ks}A_{ks}##are given by##f_{ij,mn}^{ks} = \delta_{k[j}\delta_{i][m}\delta_{n]s}##.Can someone help me out with this?
 
Physics news on Phys.org
failexam said:
##([A_{ij},A_{mn}])_{st} = -i(A_{j[m}\delta_{n]i}-A_{i[m}\delta_{n]j})_{st}##.
...
I would like to show that the structure constants ##f_{ij,mn}^{ks}## of the ##\mathfrak{so(n)}## Lie algebra such that##[A_{ij},A_{mn}] = if_{ij,mn}^{ks}A_{ks}##

From these equations, you have
$$f_{ij,mn}^{ks}A_{ks}=-(A_{j[m}\delta_{n]i}-A_{i[m}\delta_{n]j}) .$$
You can expand the RHS using identities like ##A_{jm} = \delta_{jk}\delta_{ms} A_{ks}## to derive the form of the structure constants.
 
Thanks! I got it!
 
It is easy to show that the generators ##(A_{ab})_{st}## of the ##\mathfrak{so(n)}## Lie algebra given by

##(A_{ab})_{st} = -i(\delta_{as}\delta_{bt}-\delta_{at}\delta_{bs}) = -i\delta_{s[a}\delta_{b]t}##

reduce to the three generators ##A_{23},A_{31}, A_{12}## of the ##so(3)## Lie algebra.

The generators ##A_{ii}## for ##i=1,2,3## are redundant as they all equal to ##0##.
The generators ##A_{32},A_{13},A_{21}## are redundant as ##A_{32}=-A_{23},A_{13}=-A_{31},A_{21}=-A_{12}##.
The redundancy comes about because the matrices ##A_{ab}## themselves form the matrix elements of an antisymmetric matrix element.

Am I correct?
 
failexam said:
It is easy to show that the generators ##(A_{ab})_{st}## of the ##\mathfrak{so(n)}## Lie algebra given by

##(A_{ab})_{st} = -i(\delta_{as}\delta_{bt}-\delta_{at}\delta_{bs}) = -i\delta_{s[a}\delta_{b]t}##

reduce to the three generators ##A_{23},A_{31}, A_{12}## of the ##so(3)## Lie algebra.

The generators ##A_{ii}## for ##i=1,2,3## are redundant as they all equal to ##0##.
The generators ##A_{32},A_{13},A_{21}## are redundant as ##A_{32}=-A_{23},A_{13}=-A_{31},A_{21}=-A_{12}##.
The redundancy comes about because the matrices ##A_{ab}## themselves form the matrix elements of an antisymmetric matrix element.

Am I correct?

Yes, the generators are antisymmetric in both pairs of indices:
$$(A_{ab})_{st} = - (A_{ba})_{st} = -(A_{ab})_{ts} .$$
 
I would also like to show that the structure constants ##f_{ij,mn}^{ks}## of the ##\mathfrak{so(n)}## Lie algebra reduce to the structure constants ##\epsilon_{ij}^{k}## of the ##so(3)## Lie algebra defined as follows:

##[X_{p},X_{q}]=i\epsilon_{pqr}X_{r}##

where ##X_{1}=A_{23},X_{2}=A_{31},X_{3}=A_{12}##.

Now, however must I try, I cannot show that ##f_{ij,mn}^{ks} = \delta_{k[j}\delta_{i][m}\delta_{n]s}## reduces to ##\epsilon_{pqr}## under the above identification ##p=ij,q=mn,r=ks##.

To illustrate,

##f_{ij,mn}^{ks}##
##= \delta_{k[j}\delta_{i][m}\delta_{n]s}##
##= \delta_{kj}\delta_{i[m}\delta_{n]s}-\delta_{ki}\delta_{j[m}\delta_{n]s}##
##= \delta_{kj}\delta_{im}\delta_{ns}-\delta_{kj}\delta_{in}\delta_{ms}-\delta_{ki}\delta_{jm}\delta_{ns}+\delta_{ki}\delta_{jn}\delta_{ms}##

Now, ##\epsilon_{123} = 1##, but ##f_{23,31}^{12} \neq 1##.

What exactly is the problem?
 
Last edited:
For ##SO(3)## we can use the invariant ##\epsilon_{ijk}## to project a pair of indices onto a single index. So the expression that you should compute is ##\epsilon_{aks}{\epsilon_b}^{ij}{\epsilon_c}^{mn} f^{ks}_{ij,mn}##.
 
All right. Let me first perform the computation.

##\epsilon_{aks}{\epsilon_b}^{ij}{\epsilon_c}^{mn} f^{ks}_{ij,mn}##
##= \epsilon_{aks}{\epsilon_b}^{ij}{\epsilon_c}^{mn} (\delta_{kj}\delta_{im}\delta_{ns}-\delta_{kj}\delta_{in}\delta_{ms}-\delta_{ki}\delta_{jm}\delta_{ns}+\delta_{ki}\delta_{jn}\delta_{ms})##
##= \epsilon_{aks}({\epsilon_b}^{mk}{\epsilon_c}^{ms} - {\epsilon_b}^{nk}{\epsilon_c}^{sn} -{\epsilon_b}^{km}{\epsilon_c}^{ms}+{\epsilon_b}^{kn}{\epsilon_c}^{sn})##
##= \epsilon_{aks}({\epsilon_b}^{mk}{\epsilon_c}^{ms} + {\epsilon_b}^{nk}{\epsilon_c}^{ns} +{\epsilon_b}^{mk}{\epsilon_c}^{ms}+{\epsilon_b}^{nk}{\epsilon_c}^{ns})##
##= 4 \epsilon_{aks}{\epsilon_b}^{mk}{\epsilon_c}^{ms}##
##= 4 \epsilon_{aks}{\epsilon_m}^{kb}{\epsilon_m}^{sc}##
##= 4 \epsilon_{aks}(\delta^{ks}\delta^{bc}-\delta^{kc}\delta^{bs})##
##= -4 \epsilon_{acb}##
##= 4 \epsilon_{abc}##

Is there some way to get rid of the factor of 4 in front of ##\epsilon_{abc}##?
 
Last edited:
failexam said:
All right. Let me first perform the computation.

##\epsilon_{aks}{\epsilon_b}^{ij}{\epsilon_c}^{mn} f^{ks}_{ij,mn}##
##= \epsilon_{aks}{\epsilon_b}^{ij}{\epsilon_c}^{mn} (\delta_{kj}\delta_{im}\delta_{ns}-\delta_{kj}\delta_{in}\delta_{ms}-\delta_{ki}\delta_{jm}\delta_{ns}+\delta_{ki}\delta_{jn}\delta_{ms})##
##= \epsilon_{aks}({\epsilon_b}^{mk}{\epsilon_c}^{ms} - {\epsilon_b}^{nk}{\epsilon_c}^{sn} -{\epsilon_b}^{km}{\epsilon_c}^{ms}+{\epsilon_b}^{kn}{\epsilon_c}^{sn})##
##= \epsilon_{aks}({\epsilon_b}^{mk}{\epsilon_c}^{ms} + {\epsilon_b}^{nk}{\epsilon_c}^{ns} +{\epsilon_b}^{mk}{\epsilon_c}^{ms}+{\epsilon_b}^{nk}{\epsilon_c}^{ns})##
##= 4 \epsilon_{aks}{\epsilon_b}^{mk}{\epsilon_c}^{ms}##
##= 4 \epsilon_{aks}{\epsilon_m}^{kb}{\epsilon_m}^{sc}##
##= 4 \epsilon_{aks}(\delta^{ks}\delta^{bc}-\delta^{kc}\delta^{bs})##
##= -4 \epsilon_{acb}##
##= 4 \epsilon_{abc}##

Is there some way to get rid of the factor of 4 in front of ##\epsilon_{abc}##?

I get the same factor of 4. It turned out that I forgot some factors of 2 in the mapping I suggested. Let us define ##A_{ij} =\gamma \epsilon_{ijp} X_p## for some constant ##\gamma##. Then we can multiply this again by ##\epsilon## to show that ##X_p = (1/(2\gamma)) \epsilon_{pij} A_{ij}##. Now consider
$$ [X_p, X_q] = \frac{1}{4\gamma^2} \epsilon_{pij} \epsilon_{qmn} [A_{ij},A_{mn}]
= \frac{1}{4\gamma^2} \epsilon_{pij} \epsilon_{qmn} f^{ks}_{ij,mn} \gamma \epsilon_{ksr} X_r.$$
We find precisely the factor of 4 that we needed and can therefore set ##\gamma=1##.
 
  • #10
Thank you so much! I get it now!
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
1
Views
2K