- #1

ChiralSuperfields

- 940

- 108

- Homework Statement
- See below

- Relevant Equations
- Position vector is the same as integral of velocity vector

For part (a) and (b) of this problem,

The solution is,

However, how did they arrive at their conclusion in part(b)?

As you can't graph it on a GC, I decide to imagine plugging in values for t, which I see that the 2t^3 grows quicker than the t^2 which is why I think they said that the particle will asymptote with the x-axis.

Anybody else have a different way at arriving at the conclusion given in part(b)? Feel free to let me know!

Many thanks!

The solution is,

However, how did they arrive at their conclusion in part(b)?

As you can't graph it on a GC, I decide to imagine plugging in values for t, which I see that the 2t^3 grows quicker than the t^2 which is why I think they said that the particle will asymptote with the x-axis.

Anybody else have a different way at arriving at the conclusion given in part(b)? Feel free to let me know!

Many thanks!