Designing simple car with suspension and brake system

Click For Summary
SUMMARY

The forum discussion focuses on the design of a small four-wheeled vehicle intended for use by firefighters, capable of operating at a speed of approximately 5 mph, climbing a 40° slope, and traversing a 12-inch diameter log. Key engineering principles discussed include the use of coil spring suspension systems, the calculation of torque required for overcoming obstacles, and the selection of appropriate motors based on estimated weight and power requirements. Participants emphasize the importance of force diagrams and the need for ground clearance in the design process.

PREREQUISITES
  • Understanding of vector statics
  • Basic principles of mechanics, including force calculations (F = ma)
  • Knowledge of suspension systems, particularly coil springs
  • Familiarity with torque calculations and gear ratios
NEXT STEPS
  • Research coil spring design parameters, including diameter and number of loops
  • Learn about torque calculations for overcoming obstacles, specifically for wheel designs
  • Investigate motor specifications suitable for the vehicle's weight and power requirements
  • Explore design considerations for stability on slopes and during turns
USEFUL FOR

Mechanical engineering students, vehicle designers, and anyone involved in creating specialized transport systems for emergency services.

qpham26
Messages
53
Reaction score
0

Homework Statement



This is just for a formal engineering report, no product will be made.

for my ME class, one of the very first courses. pre-requisite for this class is only vector static.

This is the first week of class, and the lectures covered the role of engineers...

I am being asked to design a small 4 wheels vehicle (can be transport on the bed of a pickup truck) which can be operate at human walking speed (~5mph), able to steer and brake, and have a reliable suspension system. This vehicle shall be able to climb a 40° slope, go over 12 in dia log, and go across a 30° incline.

This vehicle will be used on hot ground (~120F) and used by [STRIKE]fighter [/STRIKE] fire fighter, should be able to transport equipment as well as an injure body.


Homework Equations



This is all I have from static
F = ma
Ff = μN
F = -kx

The Attempt at a Solution


This seems overwhelmingly difficult consider the fact that I am being ask to make a complete car from scratch, including choosing the right material, choosing the right engine or motor.

we have 3 ppl, so I was assigned to work with the suspension and brake.

for going over the 12 in log, this has to do with the suspension system right? I will use the coil spring system. But how do I determine the diameter of the coil, the dia of the steel string, the number of loops, etc?

For going over and across slopes, is it the same type of problem as moving a box up an incline? what is the essential thing for this to work?

For the braking system, for this slow moving car, how do i determine the force that is needed to stop the tire? and what type of device that is usually used for making simple brake?

Please help me with some pointers and or resource. All I have found from the internet are just explanation of the mechanism, not much calculation or the actual characteristic of these thing.

Thanks for your time.
 
Last edited by a moderator:
Physics news on Phys.org
qpham26 said:

Homework Statement



This is just for a formal engineering report, no product will be made.

for my ME class, one of the very first courses. pre-requisite for this class is only vector static.

This is the first week of class, and the lectures covered the role of engineers...

I am being asked to design a small 4 wheels vehicle (can be transport on the bed of a pickup truck) which can be operate at human walking speed (~5mph), able to steer and brake, and have a reliable suspension system. This vehicle shall be able to climb a 40° slope, go over 12 in dia log, and go across a 30° incline.

This vehicle will be used on hot ground (~120F) and used by [STRIKE]fighter [/STRIKE] fire fighter, should be able to transport equipment as well as an injure body.


Homework Equations



This is all I have from static
F = ma
Ff = μN
F = -kx

The Attempt at a Solution


This seems overwhelmingly difficult consider the fact that I am being ask to make a complete car from scratch, including choosing the right material, choosing the right engine or motor.

we have 3 ppl, so I was assigned to work with the suspension and brake.

for going over the 12 in log, this has to do with the suspension system right? I will use the coil spring system. But how do I determine the diameter of the coil, the dia of the steel string, the number of loops, etc?

For going over and across slopes, is it the same type of problem as moving a box up an incline? what is the essential thing for this to work?

For the braking system, for this slow moving car, how do i determine the force that is needed to stop the tire? and what type of device that is usually used for making simple brake?

Please help me with some pointers and or resource. All I have found from the internet are just explanation of the mechanism, not much calculation or the actual characteristic of these thing.

Thanks for your time.

The 12" log part is going to be tough, especially if you are trying to transport a patient safely. BTW, there was a typo in your post that took me a while to figure out. You meant to say "fire fighter", I'm pretty sure. I've corrected it in your post.

I'd recommend starting at Google Images, and search on dune buggy. Some of those photos (especially the open-frame ones) will start to give you ideas. To get smoothly over a 12" obstacle, though, you may require something other than just wheels. It may take something more like tracks or something.

You can also use Google Images for ideas about the wheels/tracks. Just enter some other search terms to try to see what the various tracked vehicles look like. Some sort of articulated track system with suspension may be the right idea.

You might also look for images of motarized litters and other patient transport systems.
 
BTW, if it is just "operated" by the fire fighter, rather than them having to ride in it with the patient, that simplifies things some. You might be able to use large oversize articulated wheels of some sort...
 
The specification says it must be capable of going up a 40 degree slope at say 5mph carrying a certain load. You could make an estimate of the total weight and use that to work out the power required. Perhaps add some spare capacity? Then pick a suitable motor. If it turns out you need something like the engine from a monster truck and you've only allowed a few lbs for the weight of the whole vehicle then revise the weight estimate and repeat the calculation until it all makes sense. Perhaps look up the weight of a similar spec vehicles to start the process?

With motor data you can work out the gear ratio to provide the required speed and torque.

The log climb also has do with the wheel diameter and torque. Draw a force diagram of a wheel up against a log. Knowing the weight on the axle you can calculate the torque required to lift the wheel off the ground and up over the log. I suggest making the wheels quite large diameter (edit: or using tracks as others have suggested). Ever tried riding a bike over a 12" log :-)

As for going along a slope... that's probably to do with a roll over test. eg making sure the wheels are far enough apart and the centre of gravity low enough that it doesn't roll over. Imagine you are making a sharp turn on the slope...the centripetal force might also help tip the thing over. A few force diagrams showing that won't occur at max speed with a min radius turn on a slope might be the way to go.

There are obviously other practical issues that you hinted at - such as the need for ground clearance when going over the log. Working out details of the springs can come later. For example when you know how much suspension travel you can have.

That would be my approach but other people might have different ideas.
 
oh actually, i left this part out
the vehicle is controlled by a hard wired tether from the vehicle to the operator walking along the side of it. The working mechanism of that purpose is not important since we have no knowledge about electricity.
So it is like a toy car with a wired remote control.

This is the original assignment.
https://sphotos-a.xx.fbcdn.net/hphotos-ash3/r270/72569_541446955874824_580570462_n.jpg

I really don't know where to start. I spent hours searching google and youtube, but all I have found are just explanation of how each part of a typical car work.

Course that I have taken are just simply static, dynamics, mechanics of material, and fluid mechanics. whereas the only requirement for this class is vector static and it seems to me that it isn't enough.
 
Last edited by a moderator:
BTW -- for extra credit, your team should consider the fact that it is usually a bad idea to be tilting a patient who is on a litter or gurney. You should be able to incorporate some things into your design to keep the patient position constant as they are moved over the 12" log obstacle.

Have fun!
 
Ah, reading the assignment it is mainly aimed at transporting equipment, and only occasionally for transporting an injured FF. In that case, my comment about keeping the patient horizonal doesn't really apply much.

And what do you mean you don't know where to start. You have been given good starting points. Now do some work on your project! :smile:
 
CWatters said:
The specification says it must be capable of going up a 40 degree slope at say 5mph carrying a certain load. You could make an estimate of the total weight and use that to work out the power required. Perhaps add some spare capacity? Then pick a suitable motor. If it turns out you need something like the engine from a monster truck and you've only allowed a few lbs for the weight of the whole vehicle then revise the weight estimate and repeat the calculation until it all makes sense. Perhaps look up the weight of a similar spec vehicles to start the process?

With motor data you can work out the gear ratio to provide the required speed and torque.

The log climb also has do with the wheel diameter and torque. Draw a force diagram of a wheel up against a log. Knowing the weight on the axle you can calculate the torque required to lift the wheel off the ground and up over the log. I suggest making the wheels quite large diameter (edit: or using tracks as others have suggested). Ever tried riding a bike over a 12" log :-)

As for going along a slope... that's probably to do with a roll over test. eg making sure the wheels are far enough apart and the centre of gravity low enough that it doesn't roll over. Imagine you are making a sharp turn on the slope...the centripetal force might also help tip the thing over. A few force diagrams showing that won't occur at max speed with a min radius turn on a slope might be the way to go.

There are obviously other practical issues that you hinted at - such as the need for ground clearance when going over the log. Working out details of the springs can come later. For example when you know how much suspension travel you can have.

That would be my approach but other people might have different ideas.

Hi Walter, thanks for that reply.
The thing is there isn't any specified requirements such as weight and size or speed.
since the person is walking along the side of the car so I assume that it is 5mph.
As for the weight, I am still not sure if that should be calculated given certain condition, or we can assume a weight and work out the force needed from the motor.
You mentioned about centripetal force, I think it won't be needed since the problem is simplified to the case of just moving in a straight path across the slope.
 
berkeman said:
Ah, reading the assignment it is mainly aimed at transporting equipment, and only occasionally for transporting an injured FF. In that case, my comment about keeping the patient horizonal doesn't really apply much.

And what do you mean you don't know where to start. You have been given good starting points. Now do some work on your project! :smile:

Thanks Berkeman, I am still kinda lost, but I guess I 'll try to find some sort of data to work with.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 19 ·
Replies
19
Views
3K
Replies
4
Views
2K
Replies
13
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
13
Views
3K
  • · Replies 15 ·
Replies
15
Views
7K
  • · Replies 2 ·
Replies
2
Views
4K