Destination Points in Harmonic Sequences

Click For Summary

Discussion Overview

The discussion revolves around the concept of destination points in harmonic sequences, specifically exploring whether a destination point can be reached for any value of θ in the range 0 ≤ θ < 2𝜋. Participants also inquire about the existence of a function that encompasses all destination points.

Discussion Character

  • Exploratory
  • Technical explanation
  • Mathematical reasoning

Main Points Raised

  • Some participants propose that the harmonic sequence will continue for all values of θ and question if a destination point will be reached.
  • One participant asserts that for 0 < θ < 2𝜋, the path will converge to a limit point, which can be expressed using complex numbers and a series summation.
  • A detailed mathematical expression for the limit point is provided, involving a series and logarithmic functions, with a specific case noted for θ = π.
  • Another participant shares a graphical representation of the limit points based on the provided formula, indicating specific coordinates for certain values of θ.
  • There is mention of the Leibniz series and its relation to the limit points for θ = π/2, with calculations presented for the corresponding x and y values.

Areas of Agreement / Disagreement

Participants express varying viewpoints on the existence and nature of destination points, with some agreeing on the convergence of the series while others raise questions about the complexity of finding a function that represents the set of destination points. The discussion remains unresolved regarding the broader implications of these findings.

Contextual Notes

Limitations include the dependence on the definitions of convergence and the specific conditions under which the series is evaluated. The mathematical steps leading to the limit point are not fully resolved, and the complexity of finding a function that represents all destination points is acknowledged.

wheepep
Messages
9
Reaction score
0
View attachment 6244

The pattern above will continue for all values of the harmonic sequence.

Will a destination point be reached for any value of θ where 0 ≤ θ < 2𝜋?

(I know it won’t for θ = 0)

Is there a function which contains the set of all destination points?
 

Attachments

  • Screen Shot 2016-11-29 at 7.05.10 PM.png
    Screen Shot 2016-11-29 at 7.05.10 PM.png
    6 KB · Views: 179
Mathematics news on Phys.org
wheepep said:
The pattern above will continue for all values of the harmonic sequence.

Will a destination point be reached for any value of θ where 0 ≤ θ < 2𝜋?

(I know it won’t for θ = 0)

Is there a function which contains the set of all destination points?
The answer is Yes. If $0<\theta<2\pi$ then the path will converge to a limit point, which you can find by using complex numbers.

The limit point will be the sum of the series $1 + \tfrac12e^{i\theta} + \tfrac13e^{2i\theta} + \tfrac14e^{3i\theta} + \ldots$. You can sum that series using the power series expansion $\log(1-x) = -x - \frac12x^2 - \frac13x^3 - \ldots$, like this: $$\begin{aligned}1 + \tfrac12e^{i\theta} + \tfrac13e^{2i\theta} + \tfrac14e^{3i\theta} + \ldots &= e^{-i\theta}\sum_1^\infty\frac{e^{in\theta}}n \\ &= -e^{-i\theta}\log\bigl(1 - e^{i\theta}\bigr) \\ &= -e^{-i\theta}\log(1 - \cos\theta - i\sin\theta) \\ &= -e^{-i\theta}\log\bigl( 2\sin^2\tfrac\theta2 - 2i\sin\tfrac\theta2\cos\tfrac\theta2 \bigr) \\ &= -e^{-i\theta}\log\Bigl(2\sin\tfrac\theta2 \cdot e^{i(\theta - \pi)/2}\Bigr) \\ &= (-\cos\theta + i\sin\theta) \bigl(\log \bigl( 2\sin\tfrac\theta2\bigr) + i\tfrac12(\theta - \pi)\bigr) \end{aligned}$$ In terms of coordinates, this shows that your "destination point" is the point $$\Bigl(-\cos\theta\log \bigl( 2\sin\tfrac\theta2\bigr) + \tfrac12(\pi - \theta)\sin\theta\,,\, \sin\theta\log \bigl( 2\sin\tfrac\theta2\bigr) + \tfrac12(\pi - \theta)\cos\theta \Bigr).$$ That looks complicated. But I think it is probably correct because it gives the right result $(\log2,0)$ when $\theta = \pi$. (In that case, the series just becomes $1-\frac12 + \frac13 - \ldots$, which converges to $\log2$ on the real axis.)

If you are asking for a function that has this set of points as its graph, I think you can see that this would be a pretty hard problem. (Worried)
 
That's great. Thanks!
 
Hey wheepep! ;)

Here's the graph of the limit points based on Opalg's formula:

\begin{tikzpicture}
%preamble \usepackage{pgfplots}
\begin{axis}[xmin=0, grid=both, axis lines=middle, axis equal, xlabel=$x$, ylabel=$y$]
\addplot[ultra thick, red, domain=0:3.142, variable=t, samples=51]
( {-cos(deg(t))*ln(2*sin(deg(t/2)))+1/2*(pi-t)*sin(deg(t))},
{sin(deg(t))*ln(2*sin(deg(t/2)))+1/2*(pi-t)*cos(deg(t))} );
\addplot[red, mark=ball] coordinates {({pi/4}, {ln(2)/2})} node[above left] {$\theta=\pi/2$};
\addplot[red, mark=ball] coordinates {(ln(2), 0)} node[above left] {$\theta=\pi$};
\end{axis}
\end{tikzpicture}

In particular we can see that Leibniz series is also in there for $\theta=\frac\pi 2$ with $x=1-\frac 13 + \frac 15 - ... =\frac \pi 4$.
That limit point has $y=\frac 12 - \frac 14 + \frac 16 - ... = \frac 12(1-\frac 12 +\frac 13 - ...)= \frac 12 \ln 2$, which is half of the Alternating harmonic series.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 46 ·
2
Replies
46
Views
8K
  • · Replies 18 ·
Replies
18
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K