Determinant of 3x3 matrix equal to scalar triple product?

Click For Summary
SUMMARY

The determinant of a 3x3 matrix is equivalent to the scalar triple product of its column vectors, represented mathematically as det A = a_1 · (a_2 × a_3). The discussion highlights a common confusion in vector multiplication, particularly in distinguishing between scalar and vector products. The correct interpretation involves ensuring that the operations are performed in the right order and context, avoiding the erroneous multiplication by three. The use of the Levi-Civita symbol is suggested as an alternative method for clarity in component calculations.

PREREQUISITES
  • Understanding of 3x3 matrix determinants
  • Familiarity with vector operations, including dot and cross products
  • Knowledge of the Levi-Civita symbol and its application in vector calculus
  • Basic linear algebra concepts
NEXT STEPS
  • Study the properties of determinants in linear algebra
  • Learn about the Levi-Civita symbol and its use in vector calculus
  • Explore vector triple products and their geometric interpretations
  • Practice solving problems involving scalar triple products and determinants
USEFUL FOR

Students and professionals in mathematics, physics, and engineering who are working with linear algebra, particularly those focusing on vector calculus and matrix theory.

Erithacus
Messages
3
Reaction score
0
The determinant of a 3x3 matrix can be interpreted as the volume of a parallellepiped made up by the column vectors (well, could also be the row vectors but here I am using the columns), which is also the scalar triple product.
I want to show that:
##det A \overset{!}{=} a_1 \cdot (a_2 \times a_3 ) ##
with ## A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} ##

I started to develop det A like this:
## det A = a_{11} (a_{22}a_{33}-a_{23}a_{32})-a_{12} (a_{21}a_{33}-a_{23}a_{31})+a_{13} (a_{21}a_{32}-a_{22}a_{31}) ##

With ## e_i ## as unit vectors, this should equal:
## det A = a_1e_1\cdot (a_2 \times a_3)e_1-a_2e_1\cdot (a_1 \times a_3)e_1+a_3e_1\cdot (a_1 \times a_2)e_1 = a_1\cdot (a_2 \times a_3)-a_2\cdot (a_1 \times a_3)+a_3\cdot (a_1 \times a_2) ##

With the rules for cross products I get:
## det A = a_1\cdot (a_2 \times a_3)+a_1\cdot (a_2 \times a_3)+a_1\cdot (a_2 \times a_3) = 3 \cdot a_1 (a_2 \times a_3) ##

Shouldn't I get only ## a_1 (a_2 \times a_3) ##? Not times three. Please, can someone say what I am doing wrong? Or is it right? In that case, how should I interpret it?
 
Physics news on Phys.org
Erithacus said:
With ## e_i ## as unit vectors, this should equal:
## det A = a_1e_1\cdot (a_2 \times a_3)e_1-a_2e_1\cdot (a_1 \times a_3)e_1+a_3e_1\cdot (a_1 \times a_2)e_1 = a_1\cdot (a_2 \times a_3)-a_2\cdot (a_1 \times a_3)+a_3\cdot (a_1 \times a_2) ##
Your notation here is not very clear and likely the reason you are not getting the correct result, what do you mean by ##a_1 e_1 \cdot (a_2\times a_3)e_1##? The vector structure here makes no sense.
 
what do you mean by ##a_1 e_1 \cdot (a_2\times a_3)e_1##? The vector structure here makes no sense.

Thank you for answering!
My thought was, that to get ##a_{11}## I could do the multiplication
## a_1 \cdot e_1 = \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = a_{11} ##

And for the first row in the cross product I do the same thing:
## (a_2\times a_3) \cdot e_1= \begin{pmatrix} a_{12} \\ a_{22} \\ a_{32} \end{pmatrix} \times \begin{pmatrix} a_{13} \\ a_{23} \\ a_{33} \end{pmatrix}\cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = a_{22}a_{33}-a_{23}a_{32}##

Or doesn't it work like that?
 
Last edited:
Erithacus said:
Or doesn't it work like that?
It does, but you must be careful because you are mixing different types of multiplications. The quantity you call ##a_1e_1 \cdot (a_2 \times a_3)e_1## should really be ##(a_1\cdot e_1)((a_2\times a_3)\cdot e_1)## and is not a triple vector product. It is the product of two numbers.
 
The quantity you call ##a_1e_1 \cdot (a_2 \times a_3)e_1## should really be ##(a_1\cdot e_1)((a_2\times a_3)\cdot e_1)## and is not a triple vector product.
Okay, I see. Can I get around that or do I have to use a completely different approach to show what I want to show? Could I use the Levi-Civita symbol and do it all in components?
 
You can write ##\vec a_i = a_{i1} \vec e_1 + a_{i2}\vec e_2 + a_{i3}\vec e_3## and just perform the triple product. Of course, this is equivalent to doing it in components using the Levi-Civita symbol.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 34 ·
2
Replies
34
Views
3K
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K