(adsbygoogle = window.adsbygoogle || []).push({}); "Determinant" of a non-square matrix?

Hi,

is there any numerical invariant that would characterize the rank of a non-square matrix, similar to the determinant for square matrices? I.e. having a matrix nxm, with n<m, I'm looking for a number that would be zero if the rank of the matrix is smaller than n and nonzero if the rank is n. By "similar to the determinant" I mean that it would be some number, which you could obtain by doing some arithmetic operations on the entries, but without the necessity to perform Gaussian Elimination.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Determinant of a non-square matrix?

**Physics Forums | Science Articles, Homework Help, Discussion**