Determination of time-dependent coefficients (QM)

Aeon
Messages
21
Reaction score
0
Hi,

I am trying to solve the following equation:

\Psi(r,t) = \sum_n C_n(t) e^{-i E_n t} \psi(r)

to find the C_n(t)s.

The system I am modeling is benzene. I can, by Hückel's method, determine the time-independent solution. The apparently obvious transition from time-independent coefficients to time-dependent coefficients is troubling me. A simple plot of the squared coefficients indicates that my electron density vanishes, which is indicative of error.

I'm wondering how is the proper way to solve for the time-dependent coefficients...
 
Physics news on Phys.org
Did you leave off a subscript? If you meant to write ψ(r,t) = ∑ Cn(t) exp(-iEnt) ψn(r) where the ψn(r)'s are orthonormal, then
∫ψ(r,t) ψn(r) dr = Cn(t) exp(-iEnt), which gives you Cn.
 
I forgot a subscript, you are right.

Also, the problem was that my vectors were not orthogonalized. Thanks!
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...

Similar threads

Back
Top