Determine co-ordinates of points B?

  • Context: MHB 
  • Thread starter Thread starter ai93
  • Start date Start date
  • Tags Tags
    Points
Click For Summary

Discussion Overview

The discussion revolves around solving a problem involving the equations of two lines and determining the coordinates of their intersection point, referred to as point B. The problem includes finding the equation of a line, identifying intersection points, and calculating distance and gradient between two points.

Discussion Character

  • Homework-related
  • Mathematical reasoning
  • Technical explanation

Main Points Raised

  • Participants confirm the equation of the line with gradient 2 passing through point A (-4, 3) is y = 2x + 11.
  • To find the coordinates of point B, participants suggest solving the simultaneous equations of the two lines: y = 2x + 11 and y = x + 8.
  • One participant provides the method to find the intersection by equating the two line equations and solving for x, then substituting back to find y.
  • There is a discussion about the necessity of finding the distance between points A and B, with one participant questioning its relevance given the focus on gradient/slope.
  • The gradient between points A and B is calculated as m = (5 - 3) / (-3 - (-4)), resulting in m = 2.

Areas of Agreement / Disagreement

Participants generally agree on the correctness of the line equation and the method to find point B. However, there is some uncertainty regarding the necessity of calculating the distance between points A and B, indicating a lack of consensus on that aspect.

Contextual Notes

Participants assume familiarity with solving simultaneous equations and applying distance and slope formulas, but there are no explicit definitions or clarifications provided for these concepts within the discussion.

ai93
Messages
54
Reaction score
0
I have an equation of a line question

a) Find the equation of the straight line with gradient 2 passing through point A (-4,3)

I worked out the equation of the line, which is, y=2x+11.
But having trouble with question b) and c)

b) if the line in part a) intersects the line y=x+8 at point B, determine the co-ordinates of point B.

c) Find
i) the length
ii) the gradient
 
Mathematics news on Phys.org
a) This is the correct line. (Yes)

b) Okay, you have two lines:

$$y=2x+11\tag{1}$$

$$y=x+8\tag{2}$$

To find the coordinates of point $B$, where the two lines intersect, you must solve the simultaneous system above. Since we have both lines in function form, we can just equate the two:

$$2x+11=x+8$$

Solve this for $x$, and then substitute the resulting value for $x$ into either (1) or (2) to get the $y$-coordinate.

For part c), I am assuming you are to find the distance between $A$ and $B$, and the gradient or slope between the two points.

Distance formula:

$$d=\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}$$

Slope formula:

$$m=\frac{\Delta y}{\Delta x}=\frac{y_2-y_1}{x_2-x_1}$$

Can you proceed?
 
MarkFL said:
a) This is the correct line. (Yes)

b) Okay, you have two lines:

$$y=2x+11\tag{1}$$

$$y=x+8\tag{2}$$

To find the coordinates of point $B$, where the two lines intersect, you must solve the simultaneous system above. Since we have both lines in function form, we can just equate the two:

$$2x+11=x+8$$

Solve this for $x$, and then substitute the resulting value for $x$ into either (1) or (2) to get the $y$-coordinate.

For part c), I am assuming you are to find the distance between $A$ and $B$, and the gradient or slope between the two points.

Distance formula:

$$d=\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}$$

Slope formula:

$$m=\frac{\Delta y}{\Delta x}=\frac{y_2-y_1}{x_2-x_1}$$

Can you proceed?
Thanks!

$$2x+11=x+8$$

$$2x-x=8-11$$

$$\therefore x=-3$$

sub $$x=-3 into y=2x+11$$

= y=5

for c) Why is finding the distance necessary? Since we have to use the gradient/slope formula?

Nevertheless

m=$$\frac{5-3}{(-3)-(-4)}$$

m=2

:D
 
Yes, everything looks correct. :D

You asked why do we need the distance formula...well, you originally posted that you need the length, and I assume you are being asked to find the length of line segment $\overline{AB}$.
 

Similar threads

Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K