Given a symmetric matrix(adsbygoogle = window.adsbygoogle || []).push({});

[tex]A=\left(\begin{array}{ccccc}

\sum a_{1s} & & & & \\

& \ddots & & a_{ij} \\

& & \ddots & & \\

&a_{ij} & & \ddots & \\

& & & & \sum w_{as}

\end{array}\right) \in\mathbb{R}^{n\times n},

[/tex]

with strictly positive entries a_{ij}, and with the diagonal entries being sum of off-diagonal entries residing

in the corresponding row/column, how to proceed with the proof for A being positive definite,

[tex]

x^TAx>0

[/tex]

for some non-zero vector x.

**Physics Forums - The Fusion of Science and Community**

# Determine if a matrix if positive definite

Know someone interested in this topic? Share a link to this question via email,
Google+,
Twitter, or
Facebook

Have something to add?

- Similar discussions for: Determine if a matrix if positive definite

Loading...

**Physics Forums - The Fusion of Science and Community**