Determine Scaling Dimension of Field Theory

  • Context: Undergrad 
  • Thread starter Thread starter ergospherical
  • Start date Start date
  • Tags Tags
    Dimension Field Scaling
Click For Summary

Discussion Overview

The discussion revolves around determining the scaling dimension of fields in a field theory that is invariant under length scaling transformations. Participants explore the implications of scale invariance on the action of a real scalar field, including the effects of mass terms and interaction terms on the invariance of the action.

Discussion Character

  • Technical explanation
  • Conceptual clarification
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant presents a transformation for the scalar field and its derivatives, suggesting that the scaling dimension ##D## could be determined as ##D=-2## based on their calculations, but expresses uncertainty about the correctness of their transformations.
  • Another participant argues that for the action to be invariant under scale transformations, the scaling dimension should be ##D=1##, noting that mass terms break scale invariance and that the only allowed interaction term is ##\phi^4##, which requires ##p=4## for invariance.
  • A third participant discusses the derivation of the Noether current associated with scale symmetry and proposes a method to analyze the variation of the Lagrangian under scaling transformations, leading to a complex expression that raises questions about the contributions from different terms.
  • A later reply highlights the need to consider the Jacobian when transforming the measure in the action integral, suggesting that this could affect the results of the previous calculations.

Areas of Agreement / Disagreement

Participants express differing views on the correct scaling dimension and the implications of mass terms and interaction terms on scale invariance. There is no consensus on the correct value of ##D## or the treatment of the Lagrangian under scaling transformations.

Contextual Notes

Participants note that the calculations involve assumptions about the behavior of fields and derivatives under scaling transformations, and that the treatment of mass terms and interaction terms may complicate the analysis of scale invariance.

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,100
Reaction score
1,387
It is given that a theory is invariant under the length scaling:\begin{align*}
x &\rightarrow \lambda x \\
\phi(x) &\rightarrow \lambda^{-D} \phi(\lambda^{-1} x)
\end{align*}for some ##D## to be determined. The action of a real scalar field is here:\begin{align*}
S = \int d^4 x \dfrac{1}{2}\partial_{\mu} \phi \partial^{\mu} \phi - \dfrac{1}{2}m^2 \phi^2 -g\phi^p
\end{align*}Since ##\partial_{\mu} = \frac{\partial x'^{\nu}}{\partial x^{\mu}} \partial'_{\nu} = {(\Lambda^{-1})^{\nu}}_{\mu} \partial'_{\nu}## then would I be correct in thinking that the derivative of the field transforms as:\begin{align*}
\partial_{\mu} \phi(x) \rightarrow \partial_{\mu} \phi'(x) &= \lambda^{-D} \partial_{\mu} \phi(\lambda^{-1} x) \\
&= \lambda^{-D} {(\Lambda^{-1})^{\nu}}_{\mu} \partial'_{\nu} \phi(x')
\end{align*}so the derivative term in the action transforms as \begin{align*}
(\partial_{\mu} \phi)^2 &\rightarrow \lambda^{-2D} {(\Lambda^{-1})^{\nu}}_{\mu} {\Lambda^{\mu}}_{\rho} (\partial'_{\nu} \phi(x'))( \partial'^{\rho} \phi(x')) \\
&= \lambda^{-2D} (\partial'_{\mu} \phi(x'))^2
\end{align*}Meanwhile ##d^4 x = \lambda^{-4} d^4 x'##, and this would imply scale invariance when ##D=-2##? That feels wrong and I worry that I have transformed the wrong things.
 
Physics news on Phys.org
It's much simpler. For the scale transformation to be a symmetry, it's sufficient that the action is invariant. Now start with the massless free field,
$$S_0=\int \mathrm{d}^4 x \frac{1}{2} (\partial_{\mu} \phi) (\partial^{\mu} \phi).$$
Since ##\mathrm{d}^4 x \rightarrow \lambda^4 \mathrm{d}^4 x## and ##\partial_{\mu} \rightarrow \frac{1}{\lambda} \partial_{\mu}##, you must have ##D=1## to get ##S_0## invariant.

Then you see that the mass term is "forbidden" by the symmetry, because ##\mathrm{d}^4 x m^2 \phi^2## is not invariant. This is no surprise, because ##m## is a dimensionful parameter, which breaks scale invariance to begin with.

For the interaction term ##\mathrm{d}^4 x \phi^p## must be invariant, and thus ##p=4##. Indeed, only for ##p=4## the coupling constant ##g## is dimensionless too.

So the only allowed theory of this kind is a massless field ##\phi## with a ##\phi^4## interaction.

Some further ideas to think about:

(a) What's the Noether current of the scale symmetry?

(b) If you quantize it, you have to renormalize this massless (!) field theory, and then what happens with scale invariance?
 
  • Love
Likes   Reactions: ergospherical
I was thinking about the two questions earlier, I wonder if you can guide me a little since this is new material. What I understand is that if the Lagrangian varies by a total derivative ##\delta \mathcal{L} = \partial_{\mu} F^{\mu}## under a variation ##\delta \phi_a(x) = X_a (\phi)## of the fields, then one obtains a Noether current ##j^{\mu} = \frac{\partial \mathcal{L}}{\partial \phi_{a,\mu}} X_a(\phi) - F^{\mu}(\phi)## satisfying ##\nabla \cdot j = 0##.

For this problem, is it correct to proceed as follows? I will put ##\lambda = 1+ \epsilon## where ##\epsilon## is a small positive or negative number, then write\begin{align*}
\tilde{\phi}(x) = \lambda^{-1} \phi(\lambda^{-1}x) &= (1 - \epsilon + O(\epsilon^2))\phi((1- \epsilon) x + O(\epsilon^2 x^2)) \\
&= (1 - \epsilon + O(\epsilon^2)) (\phi(x) - \epsilon x^{\nu} \phi_{,\nu}(x) + O(\epsilon^2 x^2) ) \\
&= \phi(x) - \epsilon \phi(x) - \epsilon x^{\nu} \phi_{,\nu}(x)
\end{align*}Then ##\delta \phi = - \epsilon (\phi + x^{\nu} \phi_{,\nu})##. For ##\phi_{,\mu}## I write\begin{align*}
\delta \phi_{,\mu} &= -\epsilon \partial_{\mu}(\phi + x^{\nu} \phi_{,\nu}) \\
&= - \epsilon \phi_{,\mu} - \epsilon \partial_{\mu}(x^{\nu} \phi_{,\nu}) \\
&= - \epsilon \phi_{,\mu} - \epsilon \phi_{,\mu} - x^{\nu} \phi_{,\nu \mu} \\
&= -\epsilon(2\phi_{,\mu} + x^{\nu} \phi_{,\nu \mu})
\end{align*}I write for the Lagrangian,\begin{align*}
\mathcal{L} = \dfrac{1}{2} \phi_{,\mu} \phi^{,\mu} -g \phi^4
\end{align*}from which follows ##\frac{\partial \mathcal{L}}{\partial \phi_{,\mu}} = \phi^{,\mu}## and ##\frac{\partial \mathcal{L}}{\partial \phi} = -4g\phi^3##, so that\begin{align*}
\delta \mathcal{L} &= -\epsilon \phi^{,\mu}(2\phi_{,\mu} + x^{\nu} \phi_{,\nu \mu}) + 4 g \epsilon \phi^3 (\phi + x^{\nu} \phi_{,\nu}) \\
&= -4\epsilon( \frac{1}{2} \phi^{,\mu} \phi^{,\mu} - g \phi^4) - 4\epsilon x^{\nu} (\frac{1}{4}\phi^{,\mu} \phi_{,\nu \mu} - g \phi^3 \phi_{,\nu}) \\
&= -4 \epsilon \left[ \mathcal{L} + x^{\nu} (\frac{1}{4}\phi^{,\mu} \phi_{,\nu \mu} - g \phi^3 \phi_{,\nu}) \right] \\
&= -4 \epsilon \left[ \mathcal{L} + x^{\nu} \dfrac{\partial}{\partial x^{\nu}} (\frac{1}{2}\phi^{,\mu} \phi_{,\mu} - \dfrac{1}{4}g \phi^4) \right] \\
\end{align*}which is almost ##- 4\epsilon \partial_{\nu}(x^{\nu} \mathcal{L})## but fails because of the factor of ##1/4## in front of the ##g\phi^4## term...
 
Last edited:
  • Like
Likes   Reactions: vanhees71
Looks good (though I haven't checked the calculation in dateail). But now you also have to take into account that you have to express ##\mathrm{d}^4 x'## through ##\mathrm{d}^4 x## in the action integral, i.e., there's an additional contribution from the corresponding Jacobian, which you also get by expanding to first order in ##\epsilon##.
 
  • Like
Likes   Reactions: ergospherical

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
616
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 7 ·
Replies
7
Views
7K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K