MHB Determine Sub-Vector Spaces of W & V

Yankel
Messages
390
Reaction score
0
Hello all,

I have two sets:

\[W={\begin{pmatrix} a &2b \\ c-b &b+c-3a \end{pmatrix}|a,b,c\epsilon \mathbb{R}}\]

\[V=ax^{2}+bx+c|(a-2b)^{2}=0\]I need to determine if these sets are sub vector spaces and to determine the dim.

I think that W is a sub space and dim(W)=3 (am I right?)

I don't know how to approach V...any help will be appreciated
 
Physics news on Phys.org
The set of all 2x2 real matrices can be viewed as a vector space of dimension 4.

In this view, W becomes the space spanned by:

(1,0,0,-3), (0,2,-1,1) and (0,0,1,1).

Is this a linearly independent set?

For the second set, it might be good to verify the closure conditions, first (the 0-polynomial is obviously a member of $V$).

Suppose:

$p(x) = ax^2 + bx + c$
$q(x) = dx^2 + ex + f$

are both in $V$.

Does $(p+q)(x) = (a + d)x^2 + (b+e)x + (c+f)$ satisfy:

$[(a+ d) - 2(b+e)]^2 = 0$?

If $k$ is any real number, does:

$(ka - 2kb)^2 = 0$ (that is, is $(kp)(x) \in V$)?

(Hint: if $r^2 = 0$, then $r = 0$).

Can you find a LINEAR relationship between $a,b,c$?

Finally, PROVE your answer by exhibiting a basis, if $V$ is indeed a subspace.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 23 ·
Replies
23
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
5
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 8 ·
Replies
8
Views
3K