As for any composition of functions. The outer function if $f(x)=x^2$, so first you differentiate $x^2$, and the result is $2x$. Now our whole function is not $f(x)$, but $f(1-\ln x)$. Therefore you replace $x$ in $2x$ with $1-\ln x$ to get $2(1-\ln x)$. To finish, you need to multiply this by the derivative of $1-\ln x$.
I recommend reviewing the chain rule for computing the derivative of the composition of functions in your textbook.