Determine the matrices that represent the following rotations of R^3

  • Context: MHB 
  • Thread starter Thread starter kalish1
  • Start date Start date
  • Tags Tags
    Matrices Rotations
Click For Summary
SUMMARY

This discussion focuses on determining the rotation matrices for specific angles and axes in R^3. For part (a), the rotation matrix for an angle θ around the axis e2 is confirmed as [[cos(θ), 0, sin(θ)], [0, 1, 0], [-sin(θ), 0, cos(θ)]]. In part (b), the rotation matrix for an angle of 2π/3 around the axis defined by the vector (1,1,1) is [[-√3/2, 0, -1/2], [0, 1, 0], [1/2, 0, -√3/2]]. The orthonormal basis used for part (b) is also validated. The discussion emphasizes the importance of verifying the properties of the resulting matrices against the defined axes.

PREREQUISITES
  • Understanding of rotation matrices in three-dimensional space
  • Familiarity with orthonormal bases and their properties
  • Knowledge of trigonometric functions and their application in matrix transformations
  • Basic linear algebra concepts, including vector multiplication and dot products
NEXT STEPS
  • Explore the derivation of rotation matrices using Rodrigues' rotation formula
  • Learn about the application of rotation matrices in computer graphics
  • Study the properties of orthonormal bases in R^3
  • Investigate the implications of rotation matrices on vector transformations
USEFUL FOR

Mathematicians, physicists, computer graphics developers, and anyone interested in understanding three-dimensional rotations and their matrix representations.

kalish1
Messages
79
Reaction score
0
I need to determine the matrix that represents the following rotation of $R^3$.

(a) angle $\theta$, the axis $e_2$

(b) angle $2\pi/3$, axis contains the vector $(1,1,1)^t$

(c) angle $\pi/2$, axis contains the vector $(1,1,0)^t$

Now, I would like to check if I got the right answers because this problem has been quite difficult for me. Any help is greatly appreciated.

Please forgive me for skipping the work because formatting matrices is a real pain. Especially when I have a lot of them.

For part $(a)$, I got that $(e_2,e_3,e_1)$ is an orthonormal basis of $R^3$. Then after simplification, the matrix is

$$
\begin{matrix}
\cos(\theta) & 0 & \sin(\theta) \\
0 & 1 & 0 \\
-\sin(\theta) & 0 & \cos(\theta) \\
\end{matrix}
$$

For part $(b)$, I got an orthonormal basis as $\{[1/\sqrt(3), 1/\sqrt(3), 1/\sqrt(3)]^t, [1/\sqrt(2),-1/\sqrt(2),0]^t,[1/\sqrt(6),1/\sqrt(6),-2/\sqrt(6)]^t\}$.

Then after simplification, the matrix is $$
\begin{matrix}
-\sqrt(3)/2 & 0 & -1/2 \\
0 & 1 & 0 \\
1/2 & 0 & -\sqrt(3)/2 \\
\end{matrix}
$$

Is what I have done so far correct such that I can proceed with part $(c)$?
 
Physics news on Phys.org
Part a is correct. I always point people to this web site for rotations about arbitrary axes. In your case, since your axis for part b and your axis for part c go through the origin, you won't need Steps 1 or 7, and you can also lop off the fourth column and fourth row of the remaining necessary matrices.
 
kalish said:
I need to determine the matrix that represents the following rotation of $R^3$.

(a) angle $\theta$, the axis $e_2$

For part $(a)$, I got that $(e_2,e_3,e_1)$ is an orthonormal basis of $R^3$. Then after simplification, the matrix is

$$
\begin{bmatrix}
\cos(\theta) & 0 & \sin(\theta) \\
0 & 1 & 0 \\
-\sin(\theta) & 0 & \cos(\theta) \\
\end{bmatrix}
$$

Correct. :)
(b) angle $2\pi/3$, axis contains the vector $(1,1,1)^t$

For part $(b)$, I got an orthonormal basis as $\{[1/\sqrt(3), 1/\sqrt(3), 1/\sqrt(3)]^t, [1/\sqrt(2),-1/\sqrt(2),0]^t,[1/\sqrt(6),1/\sqrt(6),-2/\sqrt(6)]^t\}$.

Then after simplification, the matrix is $$
\begin{bmatrix}
-\sqrt(3)/2 & 0 & -1/2 \\
0 & 1 & 0 \\
1/2 & 0 & -\sqrt(3)/2 \\
\end{bmatrix}
$$

Is what I have done so far correct such that I can proceed with part $(c)$?

Your orthonormal basis is correct.

But let's see...
The axis is invariant.
What do you get if you multiply your matrix by the axis (1,1,1)?
Is it (1,1,1)?

Furthermore, (1,-1,0) is perpendicular to the axis.
So if I multiply the matrix with it, I should get a vector that makes an angle of $2\pi/3$.
Put otherwise, the dot product should be $\sqrt 2 \cdot \sqrt 2 \cdot \cos(2\pi/3) = -1$.
Is it?
Moreover, that vector should also be perpendicular to the axis (1,1,1). Is it?
 

Similar threads

  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 6 ·
Replies
6
Views
1K
Replies
31
Views
3K