MHB Determine the vectors of components

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

For the polynomial vector space $\mathbb{R}[x]$ of degree $\leq 3$ we have the following three bases:
$$B_1 = \{1 - X^2 + X^3, X - X^2, 1 - X + X^2, 1 - X\} , \\
B_2 = \{1 - X^3, 1 - X^2, 1 - X, 1 + X^2 - X^3\}, \\
B_3 = \{1, X, X^2, X^3\}$$

How can we determine the following vectors of components $\mathbb{R}^4$ ?

$\Theta_{B_1}(b)$ for all $b \in B_1$

and

$\Theta_{B_3}(b)$ for all $b \in B_1$

Could you give me hint? (Wondering)

Do we use the transformation matrix? If yes, how? (Wondering)
 
Physics news on Phys.org
I have seen the following notes :

$\Theta_{B_1}(b\in B_1)=i$-th comlumn of idenity, since it shown always at itself, and $\Theta_{B_3}(b\in B_1)=i$-th column of $B_1$. Why does this hold? (Wondering)
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

Replies
6
Views
1K
Replies
27
Views
2K
  • · Replies 34 ·
2
Replies
34
Views
2K
Replies
15
Views
2K
Replies
6
Views
1K
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
1
Views
2K