Determine torque on a dipole and quadrupole (in external E-Field)

AI Thread Summary
The discussion focuses on calculating the torque on dipoles and quadrupoles in an external electric field. The dipole moment is expressed through an integral involving charge density and the electric field, with attempts to simplify the resulting equations. Participants suggest expanding the electric field to facilitate the calculation of torque on quadrupoles, using components and derivatives. The conversation emphasizes the need for simplification techniques and proper identification of dipole moments in the context of these calculations. Overall, the thread highlights the complexities involved in deriving torque expressions for dipoles and quadrupoles.
LeoJakob
Messages
24
Reaction score
2
Homework Statement
Determine the torque on a dipole ## \vec{M}_{d} ## and on a quadrupole ## \vec{M}_{q} ## in an external electric field.
Hint 1: Develope Taylor series of the electric field ## \vec{E}(\vec{r}) ## around ## \vec{r}=0 ## up to and including the first order, using that in
Hint 2: ##\operatorname{rot} \vec{E}=0 ##
Relevant Equations
$$
\vec{M} = \int \rho(\vec{r}) \vec{r} \times \vec{E}(\vec{r}) d^{3} \vec r .
$$
For the dipole moment I calculated

$$\begin{aligned}
M &= \int \rho(\mathbf{r}) \mathbf{r} \times \mathbf{E}(\mathbf{r}) d^{3} \mathbf{r} \\
\mathbf{E}(\mathbf{r}) &\approx \mathbf{E}(\mathbf{0}) + \sum_{i=1}^{3} \nabla E_{i}(\mathbf{0}) \cdot \mathbf{r} \\
\mathbf{M}_{D} &= \mathbf{p} \times \mathbf{E} \\
&= \left( \int \rho(\mathbf{r}) \mathbf{r} d^{3} \mathbf{r} \right) \times \mathbf{E}(\mathbf{r}) \\
&= \int \rho(\mathbf{r}) \mathbf{r} \times \left[ \mathbf{E}(\mathbf{0}) + \sum_{i=1}^{3} \left( \nabla E_{i}(\mathbf{0}) \cdot \mathbf{r} \right) \mathbf{e}_i \right] d^{3} \mathbf{r} \\
&= \int \rho(\mathbf{r}) \left( \mathbf{r} \times \mathbf{E}(\mathbf{0}) + \sum_{i=1}^{3} \mathbf{r} \times \left[ \left( \nabla E_{i}(\mathbf{0}) \cdot \mathbf{r} \right) \mathbf{e}_i \right] \right) d^{3} \mathbf{r}
\end{aligned}$$

I don't know how to simplify this equation any further. Are there ways to simplify this equation?

How do I calculate the torque on the quadrupole?
 
Physics news on Phys.org
Try looking at the components, e.g.$$M_i = \int \rho(\mathbf{r}) \epsilon_{ijk} x_j E_k (\mathbf{r}) d^3 \mathbf{r}$$Then expand the field$$E_k (\mathbf{r}) = \left[ E_k (\mathbf{r}') + x_l \frac{\partial}{\partial x_l'} E_k(\mathbf{r}') + \dots \right]_{\mathbf{r}' = \mathbf{0}}$$You will be able to identify the dipole moment ##p_i = \int \rho(\mathbf{r}) x_i d^3 \mathbf{r}##.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top