Determine torque on a dipole and quadrupole (in external E-Field)

LeoJakob
Messages
24
Reaction score
2
Homework Statement
Determine the torque on a dipole ## \vec{M}_{d} ## and on a quadrupole ## \vec{M}_{q} ## in an external electric field.
Hint 1: Develope Taylor series of the electric field ## \vec{E}(\vec{r}) ## around ## \vec{r}=0 ## up to and including the first order, using that in
Hint 2: ##\operatorname{rot} \vec{E}=0 ##
Relevant Equations
$$
\vec{M} = \int \rho(\vec{r}) \vec{r} \times \vec{E}(\vec{r}) d^{3} \vec r .
$$
For the dipole moment I calculated

$$\begin{aligned}
M &= \int \rho(\mathbf{r}) \mathbf{r} \times \mathbf{E}(\mathbf{r}) d^{3} \mathbf{r} \\
\mathbf{E}(\mathbf{r}) &\approx \mathbf{E}(\mathbf{0}) + \sum_{i=1}^{3} \nabla E_{i}(\mathbf{0}) \cdot \mathbf{r} \\
\mathbf{M}_{D} &= \mathbf{p} \times \mathbf{E} \\
&= \left( \int \rho(\mathbf{r}) \mathbf{r} d^{3} \mathbf{r} \right) \times \mathbf{E}(\mathbf{r}) \\
&= \int \rho(\mathbf{r}) \mathbf{r} \times \left[ \mathbf{E}(\mathbf{0}) + \sum_{i=1}^{3} \left( \nabla E_{i}(\mathbf{0}) \cdot \mathbf{r} \right) \mathbf{e}_i \right] d^{3} \mathbf{r} \\
&= \int \rho(\mathbf{r}) \left( \mathbf{r} \times \mathbf{E}(\mathbf{0}) + \sum_{i=1}^{3} \mathbf{r} \times \left[ \left( \nabla E_{i}(\mathbf{0}) \cdot \mathbf{r} \right) \mathbf{e}_i \right] \right) d^{3} \mathbf{r}
\end{aligned}$$

I don't know how to simplify this equation any further. Are there ways to simplify this equation?

How do I calculate the torque on the quadrupole?
 
Physics news on Phys.org
Try looking at the components, e.g.$$M_i = \int \rho(\mathbf{r}) \epsilon_{ijk} x_j E_k (\mathbf{r}) d^3 \mathbf{r}$$Then expand the field$$E_k (\mathbf{r}) = \left[ E_k (\mathbf{r}') + x_l \frac{\partial}{\partial x_l'} E_k(\mathbf{r}') + \dots \right]_{\mathbf{r}' = \mathbf{0}}$$You will be able to identify the dipole moment ##p_i = \int \rho(\mathbf{r}) x_i d^3 \mathbf{r}##.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top