Determine torque on a dipole and quadrupole (in external E-Field)

Click For Summary
The discussion focuses on calculating the torque on dipoles and quadrupoles in an external electric field. The dipole moment is expressed through an integral involving charge density and the electric field, with attempts to simplify the resulting equations. Participants suggest expanding the electric field to facilitate the calculation of torque on quadrupoles, using components and derivatives. The conversation emphasizes the need for simplification techniques and proper identification of dipole moments in the context of these calculations. Overall, the thread highlights the complexities involved in deriving torque expressions for dipoles and quadrupoles.
LeoJakob
Messages
24
Reaction score
2
Homework Statement
Determine the torque on a dipole ## \vec{M}_{d} ## and on a quadrupole ## \vec{M}_{q} ## in an external electric field.
Hint 1: Develope Taylor series of the electric field ## \vec{E}(\vec{r}) ## around ## \vec{r}=0 ## up to and including the first order, using that in
Hint 2: ##\operatorname{rot} \vec{E}=0 ##
Relevant Equations
$$
\vec{M} = \int \rho(\vec{r}) \vec{r} \times \vec{E}(\vec{r}) d^{3} \vec r .
$$
For the dipole moment I calculated

$$\begin{aligned}
M &= \int \rho(\mathbf{r}) \mathbf{r} \times \mathbf{E}(\mathbf{r}) d^{3} \mathbf{r} \\
\mathbf{E}(\mathbf{r}) &\approx \mathbf{E}(\mathbf{0}) + \sum_{i=1}^{3} \nabla E_{i}(\mathbf{0}) \cdot \mathbf{r} \\
\mathbf{M}_{D} &= \mathbf{p} \times \mathbf{E} \\
&= \left( \int \rho(\mathbf{r}) \mathbf{r} d^{3} \mathbf{r} \right) \times \mathbf{E}(\mathbf{r}) \\
&= \int \rho(\mathbf{r}) \mathbf{r} \times \left[ \mathbf{E}(\mathbf{0}) + \sum_{i=1}^{3} \left( \nabla E_{i}(\mathbf{0}) \cdot \mathbf{r} \right) \mathbf{e}_i \right] d^{3} \mathbf{r} \\
&= \int \rho(\mathbf{r}) \left( \mathbf{r} \times \mathbf{E}(\mathbf{0}) + \sum_{i=1}^{3} \mathbf{r} \times \left[ \left( \nabla E_{i}(\mathbf{0}) \cdot \mathbf{r} \right) \mathbf{e}_i \right] \right) d^{3} \mathbf{r}
\end{aligned}$$

I don't know how to simplify this equation any further. Are there ways to simplify this equation?

How do I calculate the torque on the quadrupole?
 
Physics news on Phys.org
Try looking at the components, e.g.$$M_i = \int \rho(\mathbf{r}) \epsilon_{ijk} x_j E_k (\mathbf{r}) d^3 \mathbf{r}$$Then expand the field$$E_k (\mathbf{r}) = \left[ E_k (\mathbf{r}') + x_l \frac{\partial}{\partial x_l'} E_k(\mathbf{r}') + \dots \right]_{\mathbf{r}' = \mathbf{0}}$$You will be able to identify the dipole moment ##p_i = \int \rho(\mathbf{r}) x_i d^3 \mathbf{r}##.
 
I want to find the solution to the integral ##\theta = \int_0^{\theta}\frac{du}{\sqrt{(c-u^2 +2u^3)}}## I can see that ##\frac{d^2u}{d\theta^2} = A +Bu+Cu^2## is a Weierstrass elliptic function, which can be generated from ##\Large(\normalsize\frac{du}{d\theta}\Large)\normalsize^2 = c-u^2 +2u^3## (A = 0, B=-1, C=3) So does this make my integral an elliptic integral? I haven't been able to find a table of integrals anywhere which contains an integral of this form so I'm a bit stuck. TerryW

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
Replies
19
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
44
Views
5K
  • · Replies 4 ·
Replies
4
Views
3K