I Determine whether ##125## is a unit in ##\mathbb{Z_471}##

  • Thread starter Thread starter chwala
  • Start date Start date
chwala
Gold Member
Messages
2,827
Reaction score
415
TL;DR
Allow me to post the screen shot of what the text has indicated as the steps, ...which i cannot follow fully as they have talked of back-substitution.
This is the question,

1757886540613.webp


I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1.
My understanding of backwards substitution,

...
i have using Euclidean algorithm,

##471 = 3⋅121 + 108##
##121 = 1⋅108 + 13##
##108 =8⋅13+4##
##13=3⋅4+1##
##4=4⋅1+0##

using back-substitution,

##1=13-3⋅4##
##=(121-1⋅108)-3(108-8⋅13)##
...
##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121##
##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##
##=109⋅121 - 28.471##

## 109⋅ 28 ≡ 1 (\mod 471)##

Thus, the multiplicative inverse of 121 mod 471 is 109.

I want to understand the approach that the text used. Hence, my post. Cheers.
 
Last edited:
Physics news on Phys.org
The back-substitution in the context of the Euclidean algorithm is:
1=9-4⋅2,
2=29-3⋅9,
1=9-4⋅(29-3⋅9)=-4⋅29+13⋅9,
9=96-3⋅29,
1=-4⋅29+13⋅(96-3⋅29)=13⋅96-43⋅29,
29=125-1⋅96,
1=13⋅96-43⋅(125-1⋅96)=-43⋅125+56⋅96,
96=471-3⋅125,
1=-43⋅125+56⋅(471-3⋅125)=56⋅471-211⋅125=260⋅125.
 
chwala said:
i have using Euclidean algorithm,

##471 = 3⋅121 + 108##
##121 = 1⋅108 + 13##
##108 =8⋅13+4##
##13=3⋅4+1##
##4=4⋅1+0##

using back-substitution,

##1=13-3⋅4##
##=(121-1⋅108)-3(108-8⋅13)##
...
##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121##
##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##
##=109⋅121 - 28.471##
Although you have not used the standard step-by-step approach, your solution is also correct.
 
Thks @Gavran ,I will check on your approach...
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 18 ·
Replies
18
Views
13K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 48 ·
2
Replies
48
Views
16K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
452
  • · Replies 7 ·
Replies
7
Views
3K