Determine whether or not something is a subspace

  • Thread starter Thread starter kesun
  • Start date Start date
  • Tags Tags
    Subspace
Click For Summary
A set of vectors in R^n is a subspace if it satisfies two conditions: the sum of any two vectors in the set must also be in the set, and any scalar multiple of a vector in the set must also be in the set. The discussion centers on whether the set {(x1,x2,x3)|x1x2=0} qualifies as a subspace of R^3. It is concluded that this set does not satisfy the subspace criteria because adding two vectors from the set can yield a vector that does not meet the condition x1x2=0. Therefore, the set is not a subspace of R^3.
kesun
Messages
37
Reaction score
0
My understanding of the subspace still isn't solid enough, so I want to know what I know so far is at least correct.

By definition, a set of vectors S of Rn is called a subspace of Rn iff for all vectors (I will call them x):
1) (x+y) \in S and
2) kx \in S.

Also, the solution set of a homogeneous system is always a subspace.

When I encounter problems such as determine whether or not {(x1,x2,x3)|x1x2=0} is a subspace of its corresponding Rn, I would approach this problem as such:

Since the set has only three vectors, then it's in R3, first of all; then I check for 1): Suppose a set of vectors Y {(y1,y2,y3)|y1y2=0}, then (S+Y)=x1x2+y1y2=0+0=0; for 2): kS=(kx1)(kx2)=(k0)(k0)=0. Therefore it is a subspace of R3.

Is my way of solving this problem correct?
 
Physics news on Phys.org
You are right in that you must check your the two conditions. But you must do it for arbitrary vectors, you didn't seem to do this correctly. Consider

(1,0,0), (0,1,0) \in \{(x_{1},x_{2},x_{3})|x_{1}x_{2}=0\}.

If you add them you obtain (1,1,0) which clearly does not have x_{1}x_{2} = 0. Also the way you present your vectors doesn't seem standard.
 
kesun said:
My understanding of the subspace still isn't solid enough, so I want to know what I know so far is at least correct.

By definition, a set of vectors S of Rn is called a subspace of Rn iff for all vectors (I will call them x):
1) (x+y) \in S and
2) kx \in S.

Also, the solution set of a homogeneous system is always a subspace.

When I encounter problems such as determine whether or not {(x1,x2,x3)|x1x2=0} is a subspace of its corresponding Rn, I would approach this problem as such:

Since the set has only three vectors, then it's in R3, first of all; then I check for 1): Suppose a set of vectors Y {(y1,y2,y3)|y1y2=0}, then (S+Y)=x1x2+y1y2=0+0=0; for 2): kS=(kx1)(kx2)=(k0)(k0)=0. Therefore it is a subspace of R3.

Is my way of solving this problem correct?
That was a nice attempt but your steps were wrong.
{(x1,x2,x3)|x1x2=0} is a subset of \mathbb{R}^3\which satisfies the property that x1x2 = 0. but since x1, x2 are in \mathbb{R}, then either x1=0 or x2=0 or both equal zero.<br /> To proof that it is a subspace, let y and s be vectors in {(x1,x2,x3)|x1x2=0} such that y = (y1,y2,y3) and s = (s1,s2,s3), then<br /> y+s = (y1+s1,y2+s2,y3+s3)<br /> check (y1+s1)(y2+s2) = y1y2+y1s2+s1y2+s1s2= y1s2+s1y2 (since y1y2=0 and s1s2=0<br /> clear in general; y1s2+s1y2 is not equal to zero. this implies that it does not satisfy the property x1x2 = 0. Hence the set {(x1,x2,x3)|x1x2=0} is not a subspace of \mathbb{R}^3\. we don't need to proof the second property
 
kesun said:
My understanding of the subspace still isn't solid enough, so I want to know what I know so far is at least correct.

By definition, a set of vectors S of Rn is called a subspace of Rn iff for all vectors (I will call them x):
1) (x+y) \in S and
2) kx \in S.

Also, the solution set of a homogeneous system is always a subspace.

When I encounter problems such as determine whether or not {(x1,x2,x3)|x1x2=0} is a subspace of its corresponding Rn, I would approach this problem as such:

Since the set has only three vectors, then it's in R3, first of all; then I check for 1): Suppose a set of vectors Y {(y1,y2,y3)|y1y2=0}, then (S+Y)=x1x2+y1y2=0+0=0; for 2): kS=(kx1)(kx2)=(k0)(k0)=0. Therefore it is a subspace of R3.

Is my way of solving this problem correct?
That was a nice attempt but your steps were wrong.
{(x1,x2,x3)|x1x2=0} is a subset of R3 which satisfies the property that x1x2 = 0. but since x1, x2 are in R3 then either x1=0 or x2=0 or both equal zero.
To proof that it is a subspace, let y and s be vectors in {(x1,x2,x3)|x1x2=0} such that y = (y1,y2,y3) and s = (s1,s2,s3), then
y+s = (y1+s1,y2+s2,y3+s3)
check (y1+s1)(y2+s2) = y1y2+y1s2+s1y2+s1s2= y1s2+s1y2 (since y1y2=0 and s1s2=0
clear in general; y1s2+s1y2 is not equal to zero. this implies that it does not satisfy the property x1x2 = 0. Hence the set {(x1,x2,x3)|x1x2=0} is not a subspace of R3. we don't need to proof the second property
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
5
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K