Dimension of set S, subspace of R3?

  • Thread starter concon
  • Start date
  • #1
65
0

Homework Statement


Determine whether set S = {2a,-4a+5b,4b| aε R ^ bε R} is a subspace of R3?

If it is a subspace of R3, find the dimension?



Homework Equations


dimension= n if it forms the basis of Rn, meaning that its linear independent and span(S) = V



The Attempt at a Solution


I am confused on really where to start on this problem.
What do I do with the a's and b's? I have only done problems like this with real values for the vectors. What is the first step in determining if this is a subspace?
 

Answers and Replies

  • #2
jbunniii
Science Advisor
Homework Helper
Insights Author
Gold Member
3,473
255
First step is to recall the definition of a subspace: it must be closed under addition and scalar multiplication.

So start by taking two arbitrary elements of ##S##. An arbitrary element looks like ##v_1 = (2a_1, -4a_1 + 5b_1, 4b_1)##. A second one looks like ##v_2 = (2a_2, -4a_2 + 5b_2, 4b_2)##. What do you get when you add ##v_1## and ##v_2##?
 
  • #3
65
0
Adding v1 and v2

First step is to recall the definition of a subspace: it must be closed under addition and scalar multiplication.

So start by taking two arbitrary elements of ##S##. An arbitrary element looks like ##v_1 = (2a_1, -4a_1 + 5b_1, 4b_1)##. A second one looks like ##v_2 = (2a_2, -4a_2 + 5b_2, 4b_2)##. What do you get when you add ##v_1## and ##v_2##?

well if you add them wouldn't you get a new vector
that is
(2a1 + 2a2, -4a1-4a2 + 5b1 +5b2, 4b1 + 4b2)
Which is not in the same form as v1 and v2 thus it is not a subspace right?
So you cannot give it a dimension? Is this correct?

Thanks for the reply! Can you look at my other posts and help with those?
 
  • #4
jbunniii
Science Advisor
Homework Helper
Insights Author
Gold Member
3,473
255
well if you add them wouldn't you get a new vector
that is
(2a1 + 2a2, -4a1-4a2 + 5b1 +5b2, 4b1 + 4b2)
Which is not in the same form as v1 and v2 thus it is not a subspace right?
What if I rearrange the expressions a bit: ##(2(a_1 + a_2), -4(a_1 + a_2) + 5(b_1 + b_2), 4(b_1 + b_2))##. Is this an element of ##S##?
 
  • #5
65
0
What if I rearrange the expressions a bit: ##(2(a_1 + a_2), -4(a_1 + a_2) + 5(b_1 + b_2), 4(b_1 + b_2))##. Is this an element of ##S##?

Okay gotcha so when you re-arrange like that them yes it is an element of S and thus is closed under addition. So it is a subspace?
 
  • #6
jbunniii
Science Advisor
Homework Helper
Insights Author
Gold Member
3,473
255
Okay gotcha so when you re-arrange like that them yes it is an element of S and thus is closed under addition. So it is a subspace?
You also need to check that it is closed under scalar multiplication.
 
  • #7
HallsofIvy
Science Advisor
Homework Helper
41,833
964
As far as the dimension is concerned, notice that (2a,-4a+5b,4b)= (2a, -4a, 0)+ (0, 5b, 4b)= a(2, -4, 0)+ b(0, 5, 4).
 
  • #8
65
0
Multiplication

You also need to check that it is closed under scalar multiplication.
So if I take v1 = (2a, -4a+5b , 4b)
and multiply by the scalar k=3
you would get
v1 = (6a, -12a +15b, 12b)
So it isn't closed under scalar multiplication or is it?
 
  • #9
jbunniii
Science Advisor
Homework Helper
Insights Author
Gold Member
3,473
255
So if I take v1 = (2a, -4a+5b , 4b)
and multiply by the scalar k=3
you would get
v1 = (6a, -12a +15b, 12b)
So it isn't closed under scalar multiplication or is it?
We can rewrite that expression as ##(2(3a), -4(3a) + 5(3b), 4(3b))##. Is this in ##S##? What happens if you replace ##k=3## by something more general, i.e. just ##k##?
 
  • #10
65
0
We can rewrite that expression as ##(2(3a), -4(3a) + 5(3b), 4(3b))##. Is this in ##S##? What happens if you replace ##k=3## by something more general, i.e. just ##k##?
Well I guess as long as k isn't zero then it is also closed under scalar multiplication right?
 
  • #11
65
0
We can rewrite that expression as ##(2(3a), -4(3a) + 5(3b), 4(3b))##. Is this in ##S##? What happens if you replace ##k=3## by something more general, i.e. just ##k##?
Okay so it is subspace. Now how do I find the dimension?
 
  • #12
jbunniii
Science Advisor
Homework Helper
Insights Author
Gold Member
3,473
255
Well I guess as long as k isn't zero then it is also closed under scalar multiplication right?
##k=0## works too:
$$0(2a, -4a + 5b, 4b) = (2(0), -4(0) + 5(0), 4(0)) = (2a', -4a' + 5b', 4b')$$
where ##a' = b' = 0##.
 
  • #13
jbunniii
Science Advisor
Homework Helper
Insights Author
Gold Member
3,473
255
Well I guess as long as k isn't zero then it is also closed under scalar multiplication right?
See HallsofIvy's note above.
 
  • #15
jbunniii
Science Advisor
Homework Helper
Insights Author
Gold Member
3,473
255
Okay so dimension is 2?
That's right. As Halls noted,
$$(2a,-4a+5b,4b)= (2a, -4a, 0)+ (0, 5b, 4b)= a(2, -4, 0)+ b(0, 5, 4)$$
and this observation allows you to immediately see a basis for the subspace. Do you see why?
 

Related Threads on Dimension of set S, subspace of R3?

  • Last Post
Replies
9
Views
16K
  • Last Post
Replies
6
Views
4K
  • Last Post
Replies
7
Views
14K
Replies
3
Views
984
  • Last Post
Replies
15
Views
5K
  • Last Post
Replies
8
Views
5K
  • Last Post
Replies
4
Views
3K
  • Last Post
Replies
6
Views
45K
  • Last Post
Replies
1
Views
3K
Replies
3
Views
9K
Top