MHB Determining Basic and Free Variables in a Linear System

amcgl064
Messages
2
Reaction score
0
Find the general solution to the following system of equations and indicate which variables are free and which are basic.

png.latex

png.latex

png.latex


Putting it in augmented matrix form to start we have:
1 -1 -1 4 | -3
1 0 -1/2 3 | -1
1 1 0 2 | 1

Now performing the following fundamental row operations:

R1<-->R2
R2+R3-->R2
-2R3+R2-->R2
-R3+R1-->R3
R2/-2
R2+R3-->R2
-3R3+R1-->R1

And finally I end with the augmented matrix:

1 0 -2 0 | 5
0 1 0 0 | 0
0 0 -1/2 1 |-2

Can someone please tell me if I got the correct matrix at the end and if so how do I determine which variables are free and which are basic?

Thank you.
 
Physics news on Phys.org
amcgl064 said:
Find the general solution to the following system of equations and indicate which variables are free and which are basic.

png.latex

png.latex

png.latex


Putting it in augmented matrix form to start we have:
1 -1 -1 4 | -3
1 0 -1/2 3 | -1
1 1 0 2 | 1

Now performing the following fundamental row operations:

R1<-->R2
R2+R3-->R2
-2R3+R2-->R2
-R3+R1-->R3
R2/-2
R2+R3-->R2
-3R3+R1-->R1

And finally I end with the augmented matrix:

1 0 -2 0 | 5
0 1 0 0 | 0
0 0 -1/2 1 |-2

Can someone please tell me if I got the correct matrix at the end and if so how do I determine which variables are free and which are basic?

Thank you.

Hi amcgl064, :)

The answer you have obtained for the row echelon form is incorrect. The correct answer is,

\[\left(\begin{matrix}1&-1&-1&4\\0&1&\frac{1}{2}&-1\\0&0&0&0\end{matrix}\right)\]

Please refer >>this<< for a basic introduction about basic variables and free variables. I hope you can do the rest. :)

Kind Regards,
Sudharaka.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
2
Views
3K
Replies
1
Views
1K
Replies
2
Views
3K
Replies
6
Views
3K
Replies
3
Views
1K
Replies
1
Views
1K
Back
Top