Determining domain for C^1 function

lys04
Messages
144
Reaction score
5
Homework Statement
Picture
Relevant Equations
Partial derivatives
The ####x partial derivative is equal to $$L \frac{4x}{5(x^{2}+y^{2})^{\frac{-3}{5}}}$$ and the partial for ##y## is $$L \frac{4y}{5(x^{2}+y^{2})^{\frac{-3}{5}}}$$
Using the limit definition of partial derivatives I got the partial wrt ##x## is $$L \frac{h^{\frac{4}{5}}}{h}$$ which doesn’t exist as ##h## goes to ##0##. Similar argument for partial wrt ##y##. This means that ##f## isn’t ##C^1## at the origin, right?

At every other point the partial derivatives exist and is continuous because it’s a composition of a polynomial of two variables and ##x^2/5##, so ##f## is ##C^1## at all points except the origin.

Is the reasoning correct?
IMG_0425.jpeg
 
Last edited by a moderator:
Physics news on Phys.org
I don’t think latex is working, not sure what’s wrong with it sorry
 
lys04 said:
I don’t think latex is working, not sure what’s wrong with it sorry
One problem is that { and } don't match.
 
Works very well with the additional }:

$$L \frac{4x}{5(x^{2}+y^{2})^{\frac{-3}{5}}}$$
 
\sqrt[2n+1]{x} is not differentiable at x = 0 for n \geq 1. This follows from the fact that x^{2n+1} has a point of inflection here.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top