Determining Form factor from density distribution

Click For Summary
SUMMARY

The discussion focuses on determining the form factor from density distribution using Fourier transforms. The initial approach involved integrating a complex expression, but the user encountered difficulties with the integral's complexity. A suggestion was made to keep the exponential functions separate rather than combining them into a sine function, which led to successfully solving the integral and obtaining the correct answer. The key takeaway is the importance of maintaining the structure of exponential functions in integrals for accurate results.

PREREQUISITES
  • Understanding of Fourier transforms in physics
  • Familiarity with complex exponential functions
  • Knowledge of integral calculus
  • Experience with density distribution concepts
NEXT STEPS
  • Study the application of Fourier transforms in scattering theory
  • Learn advanced techniques for solving integrals involving exponential functions
  • Explore the implications of density distributions in physical systems
  • Investigate the role of form factors in particle physics
USEFUL FOR

Physicists, mathematicians, and students involved in theoretical physics or applied mathematics, particularly those working with Fourier analysis and density distributions.

Rayan
Messages
17
Reaction score
1
Homework Statement
Show that the form factor of density distribution $$ \rho (r) $$ is $$F(q^2) $$
Relevant Equations
$$ \rho (r) = \rho_0 \cdot e^{-\frac{r}{R}} $$
$$F(q^2) = \frac{8\pi \rho_0 R^3}{1 + \frac{q^2R62}{h^2} }$$
So my first thought was that I can just use Fourier trick and integrate:

$$ F(q^2) = \int_V \rho(r) \cdot e^{ i \frac{ \vec{q} \cdot \vec{r} }{h} } d^3r $$

$$ F(q^2) = 2\pi \rho_0 \int_0^{\infty} r^2 \cdot e^\frac{-r}{R} dr \cdot \int_0^{\pi} \sin{\theta} \cdot e^{ -i \frac{q \cdot r \cos(\theta) }{h} } d\theta $$

$$ F(q^2) = 2\pi \rho_0 \frac{-h}{iq} ( \frac{ e^{ i \frac{q \cdot r }{h} } - e^{ -i \frac{q \cdot r }{h} } }{r} ) \int_0^{\infty} r^2 \cdot e^{\frac{-r}{R}} dr $$

$$ F(q^2) = \frac{-4\pi h \rho_0}{q} \int_0^{\infty} \sin(\frac{qr}{h}) e^{\frac{-r}{R}} \cdot r dr $$

But the integral is very complicated, which probably means I missed up somewhere on the way, but I can't really see it! Any tips?
 
Last edited:
Physics news on Phys.org
Rayan said:
$$ F(q^2) = 2\pi \rho_0 \frac{-h}{iq} ( \frac{ e^{ i \frac{q \cdot r }{h} } - e^{ -i \frac{q \cdot r }{h} } }{r} ) \int_0^{\infty} r^2 \cdot e^{\frac{-r}{R}} dr $$
The expression in parentheses is a function of ##r## and should be inside the integral. Instead of combining the two exponentials into a sine function, you might try leaving them as exponential functions. Can you work out the following integral? $$\int_0^{\infty} e^{ i \frac{q \cdot r }{h}}\cdot e^{\frac{-r}{R}} rdr $$
 
  • Like
Likes   Reactions: Rayan
TSny said:
The expression in parentheses is a function of ##r## and should be inside the integral. Instead of combining the two exponentials into a sine function, you might try leaving them as exponential functions. Can you work out the following integral? $$\int_0^{\infty} e^{ i \frac{q \cdot r }{h}}\cdot e^{\frac{-r}{R}} rdr $$
You're totally right! I managed to solve this integral instead and got the right answer! Thank you so much!!:)
 
  • Like
Likes   Reactions: TSny

Similar threads

  • · Replies 19 ·
Replies
19
Views
2K
Replies
2
Views
2K
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
6
Views
4K
  • · Replies 8 ·
Replies
8
Views
11K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K