MHB Determining if integral converges or diverges

  • Thread starter Thread starter tmt1
  • Start date Start date
  • Tags Tags
    Integral
Click For Summary
The integral $\int_{3}^{\infty} \frac{1}{\sqrt{x} - 1} \,dx$ is being analyzed for convergence or divergence using u-substitution. By letting $u = \sqrt{x} - 1$, the differential transforms to $dx = 2(u + 1) \, du$. The integral then simplifies to $I = 2\int_{\sqrt{3}-1}^{\infty} \left(1 + \frac{1}{u}\right) \, du$. Evaluating this integral reveals that the term $\int \frac{1}{u} \, du$ diverges, indicating that the original integral diverges as well. Thus, the integral does not converge.
tmt1
Messages
230
Reaction score
0
$\int_{3}^{\infty} \frac{1}{\sqrt{x} - 1} \,dx$

I need to find if this converges or diverges.

I'm trying u-substitution, so $u = \sqrt{x} - 1$.

Therefore, $du = \frac{1}{2\sqrt{x}} dx$.

I'm not sure how to proceed from here.
 
Physics news on Phys.org
tmt said:
$\int_{3}^{\infty} \frac{1}{\sqrt{x} - 1} \,dx$

I need to find if this converges or diverges.

I'm trying u-substitution, so $u = \sqrt{x} - 1$.

Therefore, $du = \frac{1}{2\sqrt{x}} dx$.

I'm not sure how to proceed from here.
Good so far. Just keep going:
[math]\sqrt{x} = u + 1[/math]

Thus
[math]dx = 2(u + 1) ~ du[/math]

etc.

-Dan
 
I would continue as follows:

$$dx=2\sqrt{x}\,du=(2u+2)\,du$$

And so the integral becomes:

$$I=\int_{\sqrt{3}-1}^{\infty}\frac{2u+2}{u}\,du=2\int_{\sqrt{3}-1}^{\infty} 1+\frac{1}{u}\,du=2\lim_{t\to\infty}\left(\int_{\sqrt{3}-1}^{t} 1+\frac{1}{u}\,du\right)$$
 
$$\int_3^\infty\frac{1}{\sqrt{x}-1}\text{ d}x$$

$$t^2=x,\quad2t\text{ d}t=\text{d}x$$

$$2\int_\sqrt{3}^\infty\frac{t}{t-1}\text{ d}t=2\int_\sqrt{3}^\infty1+\frac{1}{t-1}\text{ d}t$$

etc.
 
There are probably loads of proofs of this online, but I do not want to cheat. Here is my attempt: Convexity says that $$f(\lambda a + (1-\lambda)b) \leq \lambda f(a) + (1-\lambda) f(b)$$ $$f(b + \lambda(a-b)) \leq f(b) + \lambda (f(a) - f(b))$$ We know from the intermediate value theorem that there exists a ##c \in (b,a)## such that $$\frac{f(a) - f(b)}{a-b} = f'(c).$$ Hence $$f(b + \lambda(a-b)) \leq f(b) + \lambda (a - b) f'(c))$$ $$\frac{f(b + \lambda(a-b)) - f(b)}{\lambda(a-b)}...

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K