Let A, B, C, D be matrices such that:(adsbygoogle = window.adsbygoogle || []).push({});

AB + CD = 0

and

B is invertible. Moreover, consider the dimension restrictions:

A(m x n), B(n x n), C(m x m), D(m x n)

If C is a square matrix, is there a way to show that it is also invertible with only the above conditions?

**Physics Forums - The Fusion of Science and Community**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Determining invertibility of a matrix

Loading...

Similar Threads - Determining invertibility matrix | Date |
---|---|

B Why the hate on determinants? | Jun 9, 2017 |

I Proving a result about invertibility without determinants | Feb 27, 2017 |

I Using determinant to find constraints on equation | Jan 15, 2017 |

Simple Linear Algebra (determinant invertibility) | Jun 15, 2010 |

**Physics Forums - The Fusion of Science and Community**