MHB Dharshan's question via email about a Laplace Transform

AI Thread Summary
The Laplace Transform of the function 5sin(11t)sinh(11t) is evaluated using the identity for sinh and properties of Laplace Transforms. The process involves breaking down the function into its exponential components and applying the transform to each part. The final expression can be simplified to either a complex fraction or left in a more expanded form. The transforms used in the calculations are confirmed to be correct, although the final algebraic simplification may require further verification. The discussion emphasizes the importance of careful algebraic manipulation in obtaining the final result.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Evaluate $\displaystyle \mathcal{L}\left\{ 5\sin{ \left( 11 \, t \right) } \sinh{ \left( 11\,t \right) } \right\} $.

$\displaystyle \begin{align*}
\mathcal{L} \left\{ 5\sin{ \left( 11\,t \right) } \sinh{ \left( 11\,t \right) } \right\} &= \mathcal{L} \left\{ 5\sin{ \left( 11\,t \right) } \cdot \frac{1}{2} \left( \mathrm{e}^{11\,t} - \mathrm{e}^{-11\,t} \right) \right\} \\
&= \frac{5}{2} \,\mathcal{L} \left\{ \mathrm{e}^{11\,t} \sin{ \left( 11\,t \right) } - \mathrm{e}^{-11\,t} \sin{ \left( 11\,t \right) } \right\} \\
&= \frac{5}{2} \left[ \mathcal{L}\left\{ \mathrm{e}^{11\,t}\sin{ \left( 11\,t \right) } \right\} - \mathcal{L}\left\{ \mathrm{e}^{-11\,t} \sin{ \left( 11\,t \right) } \right\} \right] \\
&= \frac{5}{2} \left\{ \left[ \frac{11}{s^2 + 11^2} \right]_{s \to s - 11} - \left[ \frac{11}{s^2 + 11^2} \right]_{s \to s + 11} \right\} \\
&= \frac{55}{2} \left[ \frac{1}{\left( s - 11 \right) ^2 + 121} - \frac{1}{\left( s + 11 \right) ^2 + 121} \right]
\end{align*} $

It would be fine to leave your answer in this form, but if you get a common denominator and simplify, you could write the answer as $\displaystyle \frac{1210\,s}{s^4 + 58564}$.
 
Mathematics news on Phys.org
the transforms are correct, I didn’t check the algebra on your last simplification.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top