Diagonalizing q1ˆ3q2ˆ3 with Degenerate Perturbation Theory

ThiagoSantos
Messages
2
Reaction score
1
Homework Statement
Determine the first order correction of a system of two identical harmonic oscilators
Relevant Equations
Hˆ =(p1ˆ2 + p2ˆ2+q1ˆ2 +q2ˆ2)/2+fq1ˆ3q2ˆ3. where f is the coupling constant
I tried to use the degenerated perturbation theory but I'm having problems when it comes to diagonalizing the perturbation q1ˆ3q2ˆ3 which I think I need to find the first order correction.
 
Physics news on Phys.org
I am rusty, but I try.

According to Wikipedia the first-order correction is
$$\bra{GS} H_{int} \ket{GS}$$
(assuming you want to calculate the correction to the ground state ##\ket{GS}##). Your ground state is the vacuum for both oscillators so ##\ket{GS} = \ket{0}\ket{0}##. Where ##\ket{0} \propto \exp(- \omega_i q_i^2)## with ##i = 1,2##.(here you have two identical oscillators so ##\omega_1 = \omega_2 = 1##). So you just have to calculate:
$$\bra{0}\bra{0} q_1^3 q_2^3 \ket{0} \ket{0}$$
which (if I am not mistaken) will result in integrals of the form
$$\int dq_i q_i^3 e^{-2q_i^2} $$
you can solve this by putting ##t=x^2## (##dt = 2xdx##), which will yield the Gamma function (https://en.wikipedia.org/wiki/Gamma_function).
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...

Similar threads

Back
Top