Diagonalizing q1ˆ3q2ˆ3 with Degenerate Perturbation Theory

Click For Summary
The discussion focuses on the challenges of diagonalizing the perturbation q1ˆ3q2ˆ3 using degenerate perturbation theory. The first-order correction to the ground state is calculated using the expression $$\bra{GS} H_{int} \ket{GS}$$, where the ground state is defined as the vacuum state for two identical oscillators. The calculation involves evaluating the integral $$\bra{0}\bra{0} q_1^3 q_2^3 \ket{0} \ket{0}$$, which leads to integrals of the form $$\int dq_i q_i^3 e^{-2q_i^2}$$. A substitution of variables is suggested to simplify the integral, ultimately relating it to the Gamma function. This approach aims to resolve the difficulties encountered in finding the first-order correction.
ThiagoSantos
Messages
2
Reaction score
1
Homework Statement
Determine the first order correction of a system of two identical harmonic oscilators
Relevant Equations
Hˆ =(p1ˆ2 + p2ˆ2+q1ˆ2 +q2ˆ2)/2+fq1ˆ3q2ˆ3. where f is the coupling constant
I tried to use the degenerated perturbation theory but I'm having problems when it comes to diagonalizing the perturbation q1ˆ3q2ˆ3 which I think I need to find the first order correction.
 
Physics news on Phys.org
I am rusty, but I try.

According to Wikipedia the first-order correction is
$$\bra{GS} H_{int} \ket{GS}$$
(assuming you want to calculate the correction to the ground state ##\ket{GS}##). Your ground state is the vacuum for both oscillators so ##\ket{GS} = \ket{0}\ket{0}##. Where ##\ket{0} \propto \exp(- \omega_i q_i^2)## with ##i = 1,2##.(here you have two identical oscillators so ##\omega_1 = \omega_2 = 1##). So you just have to calculate:
$$\bra{0}\bra{0} q_1^3 q_2^3 \ket{0} \ket{0}$$
which (if I am not mistaken) will result in integrals of the form
$$\int dq_i q_i^3 e^{-2q_i^2} $$
you can solve this by putting ##t=x^2## (##dt = 2xdx##), which will yield the Gamma function (https://en.wikipedia.org/wiki/Gamma_function).
 
(a) The polarisation pattern is elliptical with maximum (1,1) and minimum (-1,-1), and anticlockwise in direction. (b) I know the solution is a quarter-wave plate oriented π/4, and half-wave plate at π/16, but don't understand how to reach there. I've obtained the polarisation vector (cos π/8, isin π/8) so far. I can't find much online guidance or textbook material working through this topic, so I'd appreciate any help I can get. Also, if anyone could let me know where I can get more...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K