RE-SUBMISSION OF POST# 44 to minimize server/TeX clash re \vbars. \uparrow substituted.
Some small clarifications added
JesseM said:
Yes, with the conditions I mentioned it's fine.
Take your time, it turns out I'll be taking a trip tomorrow and won't be back until Monday anyway.
Dear Jesse, Thank you for this very thoughtful note. Welcome back:
--------------------------------------------------
A study based on Mermin, Spooky actions at a distance: Mysteries of the quantum theory. Encyclopedia Britannica, Chicago - The Great Ideas Today 1988.
NB: The singlet state (used in most EPRB-Bell tests) is invariant under rotations, not just about the line-of-flight axis.
--------------------------------------------------(1)
Local realism defined:
P''(G, G' \uparrow H, a, b', \lambda_{k}, \lambda'_{k}) = P(G \uparrow H, a, \lambda_{k})*P'(G' \uparrow H, b', \lambda'_{k}).
(2)
Expectation defined:
P''(G, G' \uparrow H , a, b') = \sum_{k=1}^N P_3(\lambda_{k}, \lambda'_{k})*P(G \uparrow H , a, \lambda_{k})*P'(G' \uparrow H , b', \lambda'_{k}).
--------------------------------------------------
Scene 1: Alice and Bob -- far far apart -- happily await the arrival of N twins: pairwise correlated photons -- one twin at a time to each, respectively bearing the properties \lambda_{k} and \lambda'_{k} with k = 1 - N.
Note: k is a number; other subscripts -- such as a, ai, b, bi -- define spin-orientations in 3-space.
Alice has a dichotomic polarizer-analyzer [a/ai] which respectively signals G or R [often termed V or H] as tested photons enter the related output channel. Bob likewise has [b'/bi'] signaling respectively G' or R' [perhaps termed V' or H']. In this experiment,
a is an orientation orthogonal to the line-of-flight axis,
ai is orthogonal to both
a and the line-of-flight axis; primes (') denote elements of reality in Bob's locale; etc.
Alice, with her elegant simplicity, supposes fundamental particles to be magic gyroscopes with perfect rotational symmetries and related binding spin trajectories. She supposes their polarizers to be devices which burn off extrinsic spin and re-orient the intrinsic spin.
Alice supposes that \lambda_{k} and \lambda'_{k} are spin vectors, unconstrained as to length and orientation -- but pairwise correlated by the relevant conservation laws attending their birth. That is, for this experiment, they are pairwise equal and not otherwise.
Recognizing the rotational symmetry of the cosine function, Alice supposes the lambdas to be such that, if only she knew more about them: Without in any way disturbing a photon, she could predict with certainty the positive outcome of any spin-test upon it. Alice writes:
(3)
P(G \uparrow H , a, \lambda_{k}) = (cos^2 (a, \lambda_{k}) \uparrow H, a, \lambda_{k}) = 0\oplus1 = 0 xor 1.
Alice, supposing that elements of physical reality mediate all her assured (certain) positive outcomes, writes:
(4)
P(G \uparrow H , a, \lambda_{k}\hookrightarrow \lambda_{a}) = (cos^2 (a, \lambda_{k}) \uparrow H, a, \lambda_{k} \hookrightarrow \lambda_{a}) = cos^2 (a, \lambda_{a}) = 1.
(5)
P(R \uparrow H , ai, \lambda_{k}\hookrightarrow \lambda_{ai}) = (cos^2 (ai, \lambda_{k}) \uparrow H, ai, \lambda_{k} \hookrightarrow \lambda_{ai}) = cos^2 (ai, \lambda_{ai}) = 1.
In set notation, Alice defines
elements of physical reality as CFCs (counterfactual conditionals) -- binding spin trajectories associated with the perfect rotational symmetries of pristine fundamental particles:
(6)
\{\lambda_{k} \hookrightarrow \lambda_{a} \uparrow \,If \,\lambda_{k} \rightarrow [a/ai] \,then \,\lambda_{k} \rightarrow \lambda_{a}\};
(7)
\{\lambda_{k} \hookrightarrow \lambda_{ai} \uparrow \,If \,\lambda_{k} \rightarrow [a/ai] \,then \,\lambda_{k} \rightarrow \lambda_{ai}\}.So, in Alice's frame of reference:
(8)
P''(G, G' \uparrow H , a, b') = \sum_{k=1}^N P_3(\lambda_{k}, \lambda'_{k})*P(G \uparrow H , a, \lambda_{k})*P'(G' \uparrow H , b', \lambda'_{k}).
(9)
P_3(\lambda_{k}, \lambda'_{k}) = (1/2)[(\lambda_{k} \hookrightarrow \lambda_{a}, \lambda'_{k} \hookrightarrow \lambda'_{a}) + (\lambda_{k} \hookrightarrow \lambda_{ai}, \lambda'_{k} \hookrightarrow \lambda'_{ai})].
(10)
P''(G, G' \uparrow H , a, b') = \sum_{k=1}^N (1/2)[(\lambda_{k} \hookrightarrow \lambda_{a}, \lambda'_{k} \hookrightarrow \lambda'_{a}) + (\lambda_{k} \hookrightarrow \lambda_{ai}, \lambda'_{k} \hookrightarrow \lambda'_{ai})] * (cos^2(a, \lambda_{k}) \uparrow H , a, \lambda_{k}) * (cos^2(b', \lambda'_{k}) \uparrow H , b', \lambda'_{k}) =
(11)
\sum_{k=1}^N (1/2)[(cos^2(a, \lambda_{k}) \uparrow H , a, \lambda_{k} \hookrightarrow \lambda_{a}) * (cos^2(b', \lambda'_{k}) \uparrow H , b', \lambda'_{k} \hookrightarrow \lambda'_{a}) + cos^2 (a, \lambda_{k} \uparrow H , a, \lambda_{k} \hookrightarrow \lambda_{ai})*(cos^2(b', \lambda'_{k}) \uparrow H , b', \lambda'_{k} \hookrightarrow \lambda'_{ai})] =
(12)
(1/2)cos^2(a', b') + 0.
QED: A result in full accord with quantum theory, quantum experiments, and local-realism. (E & O. E.)--------------------------------------------------
In Bob's frame similarly -- detail removed due earlier server/Tex interaction:
(13)
P''(G, G' \uparrow H , a, b') = \sum_{k=1}^N (1/2)[(\lambda'_{k} \hookrightarrow \lambda'_{b}, \lambda_{k} \hookrightarrow \lambda_{b}) + (\lambda'_{k} \hookrightarrow \lambda'_{bi}, \lambda_{k} \hookrightarrow \lambda_{bi})] * (cos^2(a, \lambda_{k}) \uparrow H , a, \lambda_{k}) * (cos^2(b', \lambda'_{k}) \uparrow H , b', \lambda'_{k}) = (1/2) cos^2 (a, b).
--------------------------------------------------
In the frame of God and Albert -- detail removed due earlier server/Tex interaction -- but co-variant:
(14)
P''(G, G' \uparrow H , a, b') = \sum_{k=1}^N (1/4)[(\lambda_{k} \hookrightarrow \lambda_{a}, \lambda'_{k} \hookrightarrow \lambda'_{a}) + (\lambda_{k} \hookrightarrow \lambda_{ai}, \lambda'_{k} \hookrightarrow \lambda'_{ai}) + (\lambda'_{k} \hookrightarrow \lambda'_{b}, \lambda_{k} \hookrightarrow \lambda_{b}) + (\lambda'_{k} \hookrightarrow \lambda'_{bi}, \lambda_{k} \hookrightarrow \lambda_{bi})] * (cos^2(a, \lambda_{k}) \uparrow H , a, \lambda_{k}) * (cos^2(b', \lambda'_{k}) \uparrow H , b', \lambda'_{k}) = (1/2) cos^2 (a, b').
--------------------------------------------------
Edit 2: Alternative for God and Albert's frame: For better TeX display:-
(15)
P''_3(\lambda_{k}, \lambda'_{k}) = (1/4)[(\lambda_{k} \hookrightarrow \lambda_{a}, \lambda'_{k} \hookrightarrow \lambda'_{a}) + (\lambda_{k} \hookrightarrow \lambda_{ai}, \lambda'_{k} \hookrightarrow \lambda'_{ai}) + (\lambda'_{k} \hookrightarrow \lambda'_{b}, \lambda_{k} \hookrightarrow \lambda_{b}) + (\lambda'_{k} \hookrightarrow \lambda'_{bi}, \lambda_{k} \hookrightarrow \lambda_{bi})].
NB: Too-long line of TeX reduced by providing P''_3(\lambda_{k}, \lambda'_{k}) only. The reader can readily derive the conclusion as an exercise:
(16)
P''(G, G' \uparrow H , a, b') = (1/2) cos^2 (a, b').
PS:
Note that the co-variant derivation produces (correctly, with physical significance) the separated "Alice, Bob" elements of physical reality in the cosine argument. That is: (a, b').
The earlier cosine arguments are also rigorously correct and physically significant -- respectively (a', b') for Alice's frame, (a, b) for Bob's frame -- recalling that a, ai, b, bi are just orientations in 3-space.
--------------------------------------------------
With best regards,
JenniT