MHB Did I Apply Laplace Transforms Correctly?

shamieh
Messages
538
Reaction score
0
Solev by Laplace Transforms

$y'' - 5y' + 6y = 1$ $y(0) = 1$, $y'(0) = 0$So I am getting stuck. Here's my work

$s^2Y - 5sY + 6Y = \frac{1}{s} + s - 5$

multiplied through by $s$ to get

$s^3Y - 5s^2Y + 6sY = 1 + s^2 - 5s$

so:

$Y = \frac{1+s^2-5s}{s^3-5s^2+6s}$

so: $1+s^2-5s = \frac{A}{s} + \frac{B}{s-2} + \frac{C}{s-3}$

so: is it correct to say $1+s^2-5s = A(s-2)(s-3) + Bs(s-3) + Cs(s-2)$
 
Physics news on Phys.org
snvm i figured it out lol
 
I have the equation ##F^x=m\frac {d}{dt}(\gamma v^x)##, where ##\gamma## is the Lorentz factor, and ##x## is a superscript, not an exponent. In my textbook the solution is given as ##\frac {F^x}{m}t=\frac {v^x}{\sqrt {1-v^{x^2}/c^2}}##. What bothers me is, when I separate the variables I get ##\frac {F^x}{m}dt=d(\gamma v^x)##. Can I simply consider ##d(\gamma v^x)## the variable of integration without any further considerations? Can I simply make the substitution ##\gamma v^x = u## and then...

Similar threads

  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 8 ·
Replies
8
Views
1K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K