MHB Did I Simplify These Precalculus Problems Correctly?

AI Thread Summary
The discussion revolves around simplifying two precalculus problems. The first problem, 2x^-3 + 9x^-7, was simplified correctly to 2x^4 + 9/x^7. However, the second problem, ((5x^4+y^-8)/(10x^5y^3))^-3, was incorrectly solved, with another user providing a step-by-step correction. The correct approach involves flipping the fraction and applying exponent rules accurately. The thread emphasizes the importance of careful manipulation of exponents and fractions in precalculus.
MaximumPhysics
Messages
7
Reaction score
0
Just joined this website for math help like right now :)

Background info: I was sick for 2 years before going to university so my level in math is horrible; though I will try my best in all questions which I would ask.1. Simplify 2x^-3 + 9x^-7

Here's what I did

2/x^3 + 9/x^7
find common denominator
2/x^3 multiplied top and bottom by x^4

2x^4/x^7+9/x^7= 2x^4+9/x^7

Did I get the correct answer?

2. Simplify ((5x^4+y^-8)/(10x^5y^3))^-3

I first multiplied everything by ^-3

so (5^-3 x^-12+ y^-24)/ (10^-3 x^-15 y^-9)

(1/5^3 x^-12 + y^-24 ) / (1/10^3 x^-15 y^-9)

1/125 multiplied by 1000/1 (flipped this one)

I get 1000/125 = 8 so 8 on top

rest I can use the property of subtracting variables with exponents when it is multiplication...anyways fast forward and I get.

(8x^3)/(y^15)
 
Mathematics news on Phys.org
tenthfire said:
Just joined this website for math help like right now :)

Background info: I was sick for 2 years before going to university so my level in math is horrible; though I will try my best in all questions which I would ask.1. Simplify 2x^-3 + 9x^-7

Here's what I did

2/x^3 + 9/x^7
find common denominator
2/x^3 multiplied top and bottom by x^4

2x^4/x^7+9/x^7= 2x^4+9/x^7

Did I get the correct answer? ... Yes

2. Simplify ((5x^4+y^-8)/(10x^5y^3))^-3

...

(8x^3)/(y^15)

Good morning,

your 2nd result is wrong.

$$\left( \frac{5x^4+\frac1{y^8}}{10x^5 \cdot y^3} \right)^{-3}$$

1. step:

$$\left( \frac{5x^4+\frac1{y^8}}{10x^5 \cdot y^3} \right)^{-3} = \left( \frac{10x^5 \cdot y^3} {5x^4+\frac1{y^8}}\right)^{3}$$

2. step:

$$\left( \frac{10x^5 \cdot y^3} {5x^4+\frac1{y^8}}\right)^{3}= \left( \frac{10x^5 \cdot y^3} {\frac{5x^4 y^8+1}{y^8}}\right)^{3}$$

3. I'll leave the rest for you.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top