Diffeomorphism invariance and contracted Bianchi identity

Click For Summary
SUMMARY

The discussion centers on the relationship between diffeomorphism invariance and the twice contracted Bianchi identity in the context of general relativity, specifically referencing Straumann's "General Relativity & Relativistic Astrophysics." The twice contracted Bianchi identity, expressed as $$\nabla_{\mu}G^{\mu\nu}=0$$, is derived from the diffeomorphism invariance of the Einstein-Hilbert action. Participants express confusion regarding the treatment of the volume element $$d^{4}x$$ under diffeomorphisms and the implications of active versus passive transformations. The conversation highlights the necessity of understanding the transformation properties of tensors and the volume element in the context of coordinate transformations.

PREREQUISITES
  • Understanding of general relativity concepts, particularly the Einstein-Hilbert action.
  • Familiarity with the Bianchi identities and their implications in differential geometry.
  • Knowledge of diffeomorphisms and their role in tensor calculus.
  • Proficiency in handling Lie derivatives and their effects on volume elements.
NEXT STEPS
  • Study the derivation and implications of the Einstein-Hilbert action in general relativity.
  • Learn about the properties and applications of the Bianchi identities in differential geometry.
  • Investigate the transformation laws of tensors and volume elements under diffeomorphisms.
  • Explore the differences between active and passive transformations in the context of general relativity.
USEFUL FOR

This discussion is beneficial for physicists, mathematicians, and students specializing in general relativity, differential geometry, and theoretical physics, particularly those seeking to deepen their understanding of the mathematical foundations of Einstein's theory.

"Don't panic!"
Messages
600
Reaction score
8
I've been reading Straumann's book "General Relativity & Relativistic Astrophysics". In it, he claims that the twice contracted Bianchi identity: $$\nabla_{\mu}G^{\mu\nu}=0$$ (where ##G^{\mu\nu}=R^{\mu\nu}-\frac{1}{2}g^{\mu\nu}R##) is a consequence of the diffeomorphism (diff) invariance of the Einstein-Hilbert (EH) action. Now, I can show (I think) that the EH action is diff invariant, by considering a infinitesimal diff, generated by a vector field ##X##: $$\delta_{X}S_{EH}=\phi^{\ast}S_{EH}-S_{EH}=\int_{M}\mathcal{L}_{X}\left(d^{4}x\sqrt{-g}R\right)=\int_{M}\left[\mathcal{L}_{X}\left(d^{4}x\sqrt{-g}\right)R +d^{4}x\sqrt{-g}\mathcal{L}_{X}\left(R\right)\right]\\ \qquad\qquad\qquad\quad\;\;=\int_{M}d^{4}x\sqrt{-g}\left[\nabla_{\mu}X^{\mu}R+X^{\mu}\nabla_{\mu}R\right]=\int_{M}d^{4}x\sqrt{-g}\,\nabla_{\mu}\left(X^{\mu}R\right)\\ =\int_{\partial M}d^{3}x\sqrt{h}\,n_{\mu}X^{\mu}R=0\;\;\qquad\qquad\qquad\quad$$ where ##h_{ij}## is the induced metric on the boundary ##\partial M## of the manifold ##M##, with ##n^{\mu}## the normal vector to the boundary. The last equality follows upon the assumption that ##X^{\mu}## has compact support in ##M##.

However, I'm unsure how one uses this fact to derive the (twice-contracted) Bianchi identity?

Straumann simply writes: $$\delta S=\int_{M}d^{4}x\sqrt{-g}\left(\frac{1}{\sqrt{-g}}\frac{\delta S_{EH}}{\delta g^{\mu\nu}}\right)\delta g^{\mu\nu}=\int_{M}d^{4}x\sqrt{-g}\,G_{\mu\nu}\delta g^{\mu\nu}=-\int_{M}d^{4}x\sqrt{-g}\,G^{\mu\nu}\delta g_{\mu\nu}$$ and notes that for an infinitesimal diff (generated by some vector field ##X##), ##\delta g_{\mu\nu}=2\nabla_{(\mu}X_{\nu)}##, such that $$\delta_{X} S=-2\int_{M}d^{4}x\sqrt{-g}\,G^{\mu\nu}\nabla_{\mu}X_{\nu}=2\int_{M}d^{4}x\sqrt{-g}\,X_{\nu}\nabla_{\mu}G^{\mu\nu}=0$$ and so, since ##X^{\nu}## is arbitrary, it must be that ##\nabla_{\mu}G^{\mu\nu}=0##.

What confuses me about this, is that one neglects the effect of the Lie derivative on ##d^{4}x## in this case (in the proof that the EH action is diff invariant, it was taken into account). Is the point that an infinitesimal diff is carried out in the *same* coordinate chart, and so ##d^{4}x## doesn't change in this case?
 
Physics news on Phys.org
haushofer said:
Yes. See e.g.

http://web.mit.edu/edbert/GR/gr5.pdf

page 9 bottom, where this is explained in detail

Thanks. I've actually read these notes before, but I was left with some doubts. For example, the author states that one can always carry out a coordinate transformation, such that the coordinate values of the new point are the same as those of the old point. Wouldn't this also introduce a Jacobian factor in the action (when one shows that the action is diff invariant)?

Also, what further confuses me about this, is that the Lie derivative of the volume form is ##\mathcal{L}_{X}\left(d^{4}x\sqrt{-g}\right)=\nabla_{\mu}X^{\mu}d^{4}x\sqrt{-g}##. This suggests that ##d^{4}x## does transform under a diffeomorphism.
 
To be honest, it has been a while since I've read those notes, and I mainly remember the huge (HUGE) confusion I had (have?) concerning diffemorphisms, coordinate transformations and Lie-derivatives. I guess it all goes back to the passive v.s. active interpretation.

However, ##d^4 x \sqrt{-g}## is a scalar, and under a coordinate transformation ##x \rightarrow x + \xi(x)## a general scalar ##\phi(x)## transforms as ##\delta \phi (x) = \xi^{\rho}\partial_{\rho}\phi(x) = \xi^{\rho}\nabla_{\rho}\phi(x)## (could be a minus sign mistake). From that you should be able to deduce the transformation law of the covariant volume element.
 
haushofer said:
To be honest, it has been a while since I've read those notes, and I mainly remember the huge (HUGE) confusion I had (have?) concerning diffemorphisms, coordinate transformations and Lie-derivatives. I guess it all goes back to the passive v.s. active interpretation.

However, ##d^4 x \sqrt{-g}## is a scalar, and under a coordinate transformation ##x \rightarrow x + \xi(x)## a general scalar ##\phi(x)## transforms as ##\delta \phi (x) = \xi^{\rho}\partial_{\rho}\phi(x) = \xi^{\rho}\nabla_{\rho}\phi(x)## (could be a minus sign mistake). From that you should be able to deduce the transformation law of the covariant volume element.

I similarly am very confused over diffeomorphisms, and how to interpret passive and active coordinate transformations correctly.

I'm pretty sure, that under an infinitesimal diffeomorphism, tensors (of all rank) transform by a Lie derivative, i.e. ##\delta T^{\mu_{1}\ldots\mu_{m}}_{\;\;\nu_{1}\ldots\nu_{n}}=\mathcal{L}_{\xi}T^{\mu_{1}\ldots\mu_{m}}_{\;\;\nu_{1}\ldots\nu_{n}}##. And I know that the Lie derivative of ##d^{4}x\sqrt{-g}## is ##\mathcal{L}_{\xi}\left(d^{4}x\sqrt{-g}\right)=\nabla_{\mu}\xi^{\mu}d^{4}x\sqrt{-g}##. However, if one goes through the derivation of this, it implies that the Lie derivative of ##d^{4}x## is non-zero, implying that it does change under a diffeomorphism. Hence my confusion :frown:
 
Yes, I'm confused also now. I think it's a matter of definition. Somehow, the author performs an active transformation and after that performs a passive one, such that the new coordinates in the new system equal the values of the old coordinates in old system. But it was a long time for me since I did this kind of stuff, so probably I'm sloppy, but maybe it helps you in some way. If not, I apologize.

Forget about those notes. I'd say that under ##x^{\mu '}=x^{\mu}+\xi^{\mu}##, one has

<br /> \delta \sqrt{-g} = \frac{1}{2} \sqrt{-g} g^{\mu\nu} \delta g_{\mu\nu} = \sqrt{-g} g^{\mu\nu} \nabla_{\mu} \xi_{\nu} = \sqrt{-g} \nabla_{\mu} \xi^{\mu}<br />

and, since

<br /> d^{4}x&#039; = det|\frac{\partial x^{\mu&#039;}}{\partial x^{\nu}}| d^4 x \ \ \rightarrow \delta (d^{4}x) = \partial_{\mu} \xi^{\mu} d^{4}x<br />
(so yes: the volume element ##d^4 x## does change!)

we get in total

<br /> \delta \int (\sqrt{-g} d^4 x ) = \int \delta (\sqrt{-g} d^4 x ) = \int \Bigl( \sqrt{-g} \nabla_{\mu} \xi^{\mu} d^4 x + \sqrt{-g} \partial_{\mu} \xi^{\mu} d^{4}x \Bigr)<br />

which becomes

<br /> 2 \int \Big \nabla_{\mu} ( \sqrt{-g} \xi^{\mu} \Bigr) d^4 x<br />

But to be honest, I don't understand the factor 2. Maybe someone can give more insight.
 
haushofer said:
Yes, I'm confused also now. I think it's a matter of definition. Somehow, the author performs an active transformation and after that performs a passive one, such that the new coordinates in the new system equal the values of the old coordinates in old system. But it was a long time for me since I did this kind of stuff, so probably I'm sloppy, but maybe it helps you in some way. If not, I apologize.

Forget about those notes. I'd say that under ##x^{\mu '}=x^{\mu}+\xi^{\mu}##, one has

<br /> \delta \sqrt{-g} = \frac{1}{2} \sqrt{-g} g^{\mu\nu} \delta g_{\mu\nu} = \sqrt{-g} g^{\mu\nu} \nabla_{\mu} \xi_{\nu} = \sqrt{-g} \nabla_{\mu} \xi^{\mu}<br />

and, since

<br /> d^{4}x&#039; = det|\frac{\partial x^{\mu&#039;}}{\partial x^{\nu}}| d^4 x \ \ \rightarrow \delta (d^{4}x) = \partial_{\mu} \xi^{\mu} d^{4}x<br />
(so yes: the volume element ##d^4 x## does change!)

we get in total

<br /> \delta \int (\sqrt{-g} d^4 x ) = \int \delta (\sqrt{-g} d^4 x ) = \int \Bigl( \sqrt{-g} \nabla_{\mu} \xi^{\mu} d^4 x + \sqrt{-g} \partial_{\mu} \xi^{\mu} d^{4}x \Bigr)<br />

which becomes

<br /> 2 \int \Big \nabla_{\mu} ( \sqrt{-g} \xi^{\mu} \Bigr) d^4 x<br />

But to be honest, I don't understand the factor 2. Maybe someone can give more insight.

Thanks for your response. Yeah, I'm still confused over this whole thing. I'm yet to find any satisfactory explanation of it all from any source.
 
Did anyone find a good answer for this? I'm stuck in the same thing...
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
916
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 20 ·
Replies
20
Views
7K
  • · Replies 73 ·
3
Replies
73
Views
11K
  • · Replies 38 ·
2
Replies
38
Views
2K
Replies
0
Views
2K